FOREWORD

This supplement has been prepared to provide information covering general service repairs for the 1FZ-FE engine in the TOYOTA LAND CRUISER.

Applicable model: FZJ75, 80 series

For basic engine service repair, refer to the following repair manual.

1FZ-F, 1FZ-FE Engine Repair Manual (Pub. No. RM321E)

Please note that the publications below have also been prepared as relevant service manuals to the components and systems in this engine.

Manual Name	Pub. No.
1FZ-FE Engine Emission Control Repair Manual	ERM096E

All information in this manual is based on the latest product information at the time of publication. However, specifications
and procedures are subject to change without notice.

TOYOTA MOTOR CORPORATION

Please Note! This is not an interactive manual.. Goto Pages need to be selected

2004 TOYOTA MOTOR CORPORATION

o reduce the risk of personal injury during service or report, it is concern to unsafe the vehicle or render it unsafe the vehicle or render it unsafe the

Il rights reserved. This book may not be reprouced or copied, in whole or in part, without the ritten permission of Toyota Motor Corporation. irst Printing: Jan. 19, 1995 01-950119-00 inth Printing: Apr. 1, 2004 09-040401-00-3

HOW TO USE THIS MANUAL INDEX

An INDEX is provided on the first page of each section to guide you to the item to be repaired. To assist you in finding your way through the manual, the Section Title and major heading are given at the top of every page.

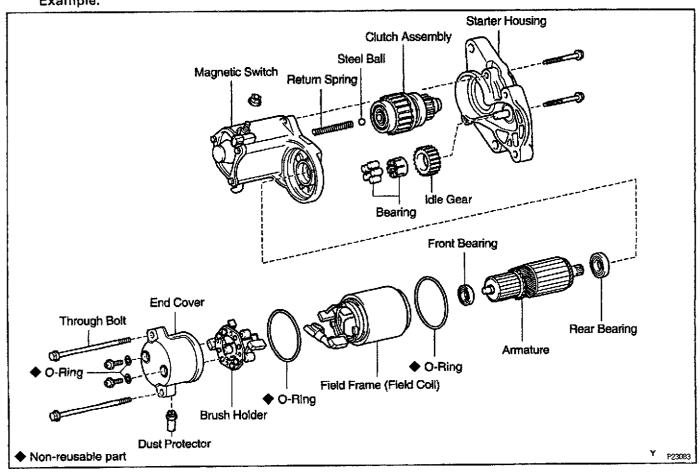
GENERAL DESCRIPTION

At the beginning of each section, a General Description (Precautions) is given that pertains to all repair operations contained in that section.

Read these precautions before starting any repair task.

TROUBLESHOOTING

TROUBLESHOOTING tables are included for each system to help you diagnose the problem and find the cause.

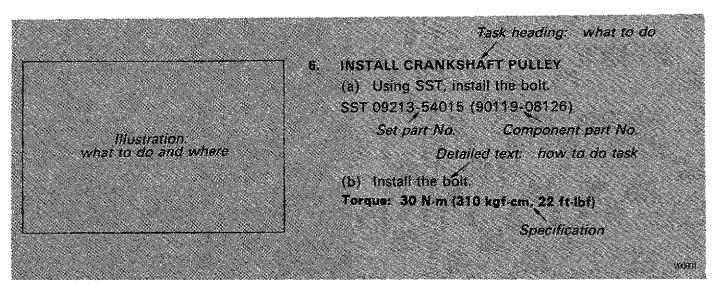

PREPARATION

Preparation lists the SST (Special Service Tools), recommended tools, equipment, lubricant and SSM (Special Service Materials) which should be prepared before beginning the operation and explains the purpose of each one.

REPAIR PROCEDURES

Most repair operations begin with an overview illustration. It identifies the components and shows how the parts fit together.

Example:



The procedures are presented in a step-by-step format:

- The illustration shows what to do and Where to do it.
- The task heading tells what to do.
- The detailed text tells how to perform the task and gives other information such as specifications and warnings.

Example:

This format provides the experienced technician with a FAST TRACK to the information needed. The upper case task heading can be read at a glance when necessary, and the text below it provides detailed information. Important specifications and warnings always stand out in bold type.

REFERENCES

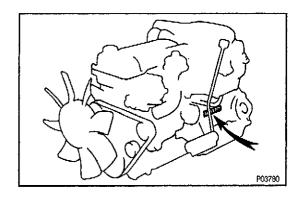
References have been kept to a minimum. However, when they are required you are given the page to refer to.

SPECIFICATIONS

Specifications are presented in bold type throughout the text where needed. You never have to leave the procedure to look up your specifications. They are also found at the end of each section, for quick reference.

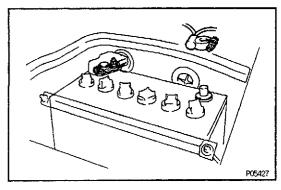
CAUTIONS, NOTICES, HINTS:

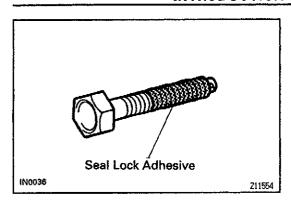
- CAUTIONS are presented in bold type, and indicate there is a possibility of injury to you or other people.
- NOTICES are also presented in bold type, and indicate the possibility of damage to the components being repaired.
- HINTS are separated from the text but do not appear in bold. They provide additional information to help you efficiently perform the repair.

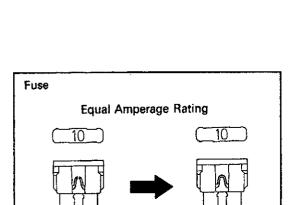

SI UNIT

The UNIT given in this manual are primarily expressed with the SI UNIT (International System of Unit), and alternately expressed in the metric system and in the yard/pound system.

Example:

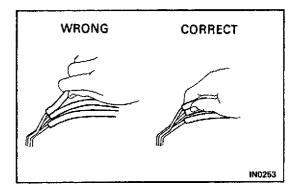

Torque: 30 N·m (310 kgf·cm, 22 ft·lbf)

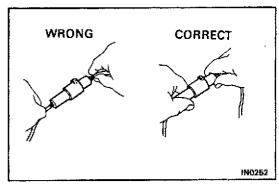

IDENTIFICATION INFORMATION ENGINE SERIAL NUMBER

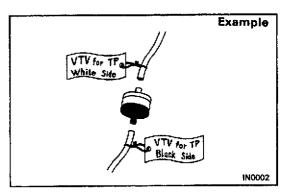

The engine serial number is stamped on the engine block as shown.

GENERAL REPAIR INSTRUCTIONS

- 1. Use fender, seat and floor covers to keep the vehicle clean and prevent damage.
- 2. During disassembly, keep parts in the appropriate order to facilitate reassembly.
- 3. Observe the following:
- (a) Before performing electrical work, disconnect the negative (—) terminal cable from the battery.
- (b) If it is necessary to disconnect the battery for inspection or repair, always disconnect the cable from the negative (—) terminal which is grounded to the vehicle body.
- (c) To prevent damage to the battery terminal post, loosen the terminal nut and raise the cable straight up without twisting or prying it.
- (d) Clean the battery terminal posts and cable terminals with a shop rag. Do not scrape them with a file or other abrasive objects.
- (e) Install the cable terminal to the battery post with the nut loose, and tighten the nut after installation. Do not use a hammer to tap the terminal onto the post.
- (f) Be sure the cover for the positive(+) terminal is properly in place.
- 4. Check hose and wiring connectors to make sure that they are secure and correct.
- 5. Non-reusable parts.
- (a) Always replace cotter pins, gaskets, O-rings and oil seals etc. with new ones.


- (b) Non—reusable parts are indicated in the component illustrations by the "♠" symbol.
- 6. Precoated parts.


 Precoated parts are bolts and nuts, etc. that are coated with a seal lock adhesive at the factory.
- (a) If a precoated part is retightened, loosened or caused to move in any way, it must be recoated with the specified adhesive.
- (b) When reusing precoated parts, clean off the old adhesive and dry with compressed air. Then apply the specified seal lock adhesive to the bolt, nut or threads.
- (c) Precoated parts are indicated in the component illustrations by the "★" symbol.
- 7. When necessary, use a sealer on gaskets to prevent leaks.
- 8. Carefully observe all specifications for bolt tightening torques. Always use a torque wrench.
- 9. Use of special service tools (SST) and special service materials (SSM) may be required, depending on the nature of the repair. Be sure to use SST and SSM where specified and follow the proper work procedure. A list of SST and SSM can be found in the preparation part at the front of each section in this manual.
- When replacing fuses, be sure the new fuse has the correct amperage rating. DO NOT exceed the rating or use one with a lower rating.


Illustration	Symbol	Part Name	Abbreviation
BE5594		FUSE	FUSE
BE5595		MEDIUM CURRENT FUSE	M-FUSE
BE5596		HIGH CURRENT FUSE	H-FUSE
BE5597		FUSIBLE LINK	FL
BE5598	IN0368	CIRCUIT BREAKER	СВ

- 11. Care must be taken when jacking up and supporting the vehicle. Be sure to lift and support the vehicle at the proper locations.
- (a) If the vehicle is to be jacked up only at the front or rear end, be sure to block the wheels at the opposite end in order to ensure safety.
- (b) After the vehicle is jacked up, be sure to support it on stands. It is extremely dangerous to do any work on a vehicle raised on a jack alone, even for a small job that can be finished quickly.
- 12. Observe the following precautions to avoid damage to the parts:
- (a) Do not open the cover or case of the ECU unless absolutely necessary. (If the IC terminals are touched, the IC may be destroyed by static electricity.)
- (b) To disconnect vacuum hoses, pull on the end, not the middle of the hose.
- (c) To pull apart electrical connectors, pull on the connector itself, not the wires.
- (d) Be careful not to drop electrical components, such as sensors or relays. If they are dropped on a hard floor, they should be replaced and not reused.
- (e) When steam cleaning an engine, protect the distributor, air filter, and VCV from water.
- (f) Never use an impact wrench to remove or install temperature switches or temperature sensors.
- (g) When checking continuity at the wire connector, insert the tester probe carefully to prevent terminals from bending.
- (h) When using a vacuum gauge, never force the hose onto a connector that is too large. Use a step—down adapter instead. Once the hose has been stretched, it may leak.
- 13. Tag hoses before disconnecting them:
- (a) When disconnecting vacuum hoses, use tags to identify how they should be reconnected.
- (b) After completing a job, double check that the vacuum hoses are properly connected. A label under the hood shows the proper layout.
- 14. Unless otherwise stated, all resistance is measured at an ambient temperature of 20°C (68°F). Because the resistance may be outside specifications if measured at high temperatures immediately after the vehicle has been running, measurements should be made when the engine has cooled down.

PRECAUTION FOR VEHICLES EQUIPPED WITH A CATALYTIC CONVERTER

INDOT -- 07

CAUTION: If large amounts of unburned gasoline flow into the converter, it may overheat and create a fire hazard. To prevent this, observe the following precautions and explain them to your customer.

- 1. Use only unleaded gasoline.
- 2. Avoid prolonged idling.

Avoid running the engine at idle speed for more than 20 minutes.

- 3. Avoid spark jump test.
- (a) Perform spark jump test only when absolutely necessary. Perform this test as rapidly as possible.
- (b) While testing, never race the engine.
- 4. Avoid prolonged engine compression measurement.

Engine compression tests must be done as rapidly as possible.

5. Do not run engine when fuel tank is nearly empty.

This may cause the engine to misfire and create an extra load on the converter.

- 6. Avoid coasting with ignition turned off and prolonged braking.
- 7. Do not dispose of used catalyst along with parts contaminated with gasoline or oil.

IF VEHICLE IS EQUIPPED WITH MOBILE COMMUNICATION SYSTEM

12R ~ OG

For vehicles with mobile communication systems such as two-way radios and cellular telephones, observe the following precautions.

- (1) Install the antenna as far as possible away from the ECU and sensors of the vehicle's electronic system.
- (2) Install the antenna feeder at least 20 cm (7.87 in.) away from the ECU and sensors of the vehicle's electronics systems. For details about ECU and sensors locations, refer to the section on the applicable component.
- (3) Do not wind the antenna feeder together with the other wiring. As much as possible, also avoid running the antenna feeder parallel with other wire harnesses.
- (4) Confirm that the antenna and feeder are correctly adjusted.
- (5) Do not install powerful mobile communications system.

ABBREVIATIONS USED IN THIS MANUAL

IN024-02

A/C	Air Conditioner	
A/T	Automatic Transmission	
ECT	Electronic Controlled Transmission	
ECU	Electronic Control Unit	
FL	Fusible Link	
IC	Integrated Circuit	
IG	Ignition	
MP	Multipurpose	
SST	Special Service Tools	
ТЕМР.	Temperature	
TP	Throttle Positioner	
VCV	Vacuum Control Valve	
w/	With	
W/o	Without	

STANDARD BOLT TORQUE SPECIFICATIONS

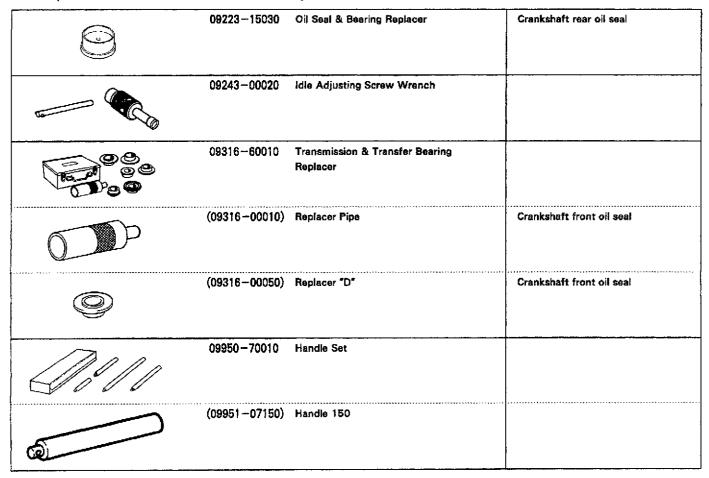
HIGOV - 02

HOW TO DETERMINE BOLT STRENGTH

	Mark	Class		Mark	Class
Hexagon head bolt	4- 5- Bolt 6- head No. 7- 8- 9- 10- 11-	4T 5T 6T 7T 8T 9T 10T	Stud bolt	No mark	4 T
	No mark	4T			
Hexagon flange bolt w/ washer hexagon bolt	No mark	4 T		Grooved	6 T
Hexagon head bolt	2 protruding lines	57			
Hexagon flange bolt w/ washer hexagon bolt	protruding lines	6T	Welded boit		
Hexagon head bolt	3 protruding lines	71			4 T
Hexagon head bolt	protruding lines	8T			

SPECIFIED TORQUE FOR STANDARD BOLTS

	Diameter	Pitch				d torque		
Class	mm	mm		Hexagon hea			lexagon flan	
			N-m	kgf-cm	ft·lbf	N-m	kgf-cm	ft-lbf
	6	1	5	55	48 inlbf	6	60	52 in.∙lbf
Î	8	1.25	12.5	130	9	14	145	10
4T	10	1.25	26	260	19	29	290	21
41	12	1.25	47	480	35	53	540	39
	14	1.5	74	760	55	84	850	61
	16	1.5	115	1,150	83		سبي	
	6	1	6.5	65	56 inlbf	7.5	75	65 in.∗Ibf
1	8	1.25	15.5	160	12	17.5	175	13
ET .	10	1.25	32	330	24	36	360	26
5T	12	1.25	59	600	43	65	670	48
	14	1.5	91	930	67	100	1,050	76
	16	1.5	140	1,400	101	-		_
	6	1	8	80	69 in.∙lbf	9	90	78 inlbf
	8	1.25	19	195	14	21	210	15
	10	1.25	39	400	29	44	440	32
6T	12	1.25	71	730	53	80	810	59
	14	1.5	110	1,100	80	125	1,250	90
	16	1.5	170	1,750	127	_	-	_
	6	1	10.5	110	8	12	120	9
ļ	8	1.25	25	260	19	28	290	21
	10	1.25	52	530	38	58	590	43
7T	12	1.25	95	970	70	105	1,050	76
	14	1.5	145	1,500	108	165	1,700	123
	16	1.5	230	2,300	166	_	- 	
	8	1.25	29	300	22	33	330	- 24
8T	10	1.25	61	620	45	68	690	50
}	12	1.25	110	1,100	80	120	1,250	90
	8	1.25	34	340	25	37	380	27
9Т	10	1.25	70	710	51	78	790	57
	12	1.25	125	1,300	94	140	1,450	105
	8	1.25	38	390	28	42	430	31
10T	10	1.25	78	800	58	88	890	64
	12	1.25	140	1,450	105	155	1,600	116
	8	1.25	42	430	31	47	480	35
117	10	1.25	87	890	64	97	990	72
	12	1.25	155	1,600	116	175	1,800	130



ENGINE MECHANICAL

PREPARATION

SST (SPECIAL SERVICE TOOLS)

EGOAY - 1M

EQUIPMENT

CO meter	
Tachometer	
Torque wrench	
Vernier calipers	

IDLE CO CHECK AND ADJUST (Hardtop)

HINT: This check is used only to determine whether or not the idle CO complies with regulations.

1. INITIAL CONDITIONS

- (a) Engine at normal operating temperature
- (b) Air cleaner installed
- (c) All pipes and hoses of air induction system connected
- (d) All accessories switched OFF
- (e) All vacuum lines properly connected
- (f) EFI system wiring connectors fully plugged
- (g) Ignition timing set correctly

2. CONNECT TACHOMETER TO ENGINE

Connect the test probe of a tachometer to terminal IG ⊖ of the check connector.

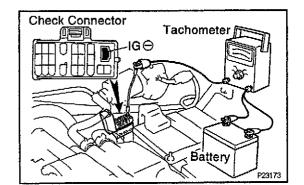
NOTICE:

- NEVER allow the tachometer terminal to touch ground as it could result in damage to the igniter and/or ignition coil.
- As some tachometers are not compatible with this ignition system, we recommend that you confirm the compatibility of your unit before use.

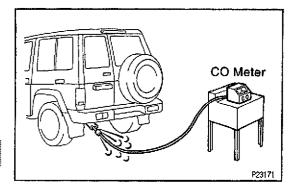
3. CHECK IDLE SPEED

Idle speed:

650 ± 50 rpm


4. CHECK AND ADJUST CO CONCENTRATION AT IDLE

NOTICE:


- Always use a CO meter when adjusting the idle mixture. It is not necessary to adjust with the idle mixture adjusting screw in most vehicles if they are in good condition. If a CO meter is not available, DO NOT ATTEMPT TO ADJUST WITH THE SCREW.
- If a CO meter is not available and it is absolutely necessary to adjust with the idle mixture adjusting screw, or if the air flow meter is replaced, use the alternative method.

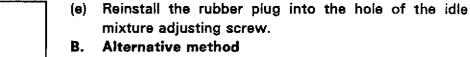
A. Method with CO meter

- (a) Check that the CO meter is properly calibrated.
- (b) Race the engine for approx. 120 seconds at approx. 2,500 rpm before measuring the concentration.
- (c) Wait 1 3 minutes after racing the engine to allow the concentration to stabilize.

(d) Insert a testing probe at least 40 cm (1.3 ft) into the tailpipe, and measure the concentration with a short time.

Idle CO concentration:

 $1.5 \pm 0.5 \%$


If the CO concentration is not as specified, adjust the idle mixture by turning the idle mixture adjusting screw with SST.

SST 09243-00020

- If the CO concentration is within specification, this adjustment is complete.
- If the CO concentration cannot be corrected by idle mixture adjustment, see the table below for other possible causes.

Troubleshooting

CO	Phenomenon	Causes
High	Rough idle (Black smoke from exhaust)	1. Clogged air filter 2. Plugged PCV valve 3. Faulty EFI systems: Faulty pressure regulator Clogged fuel return line Defective water temperature sensor Faulty engine ECU Faulty injectors Faulty throttle position sensor Faulty air flow meter

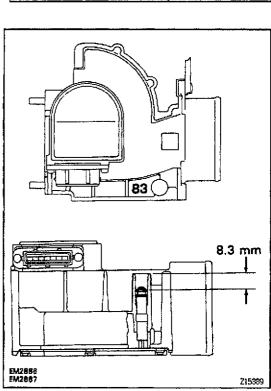
- This method is to be used ONLY when it is absolutely necessary to adjust the idle mixture screw or if the air flow meter is replaced without the aid of a CO meter.
- The inscribed number shows the depth of the idle mixture screw positioned for presetting.

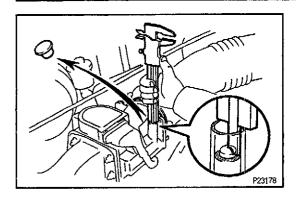
Example:

HINT:

Inscribed number 83

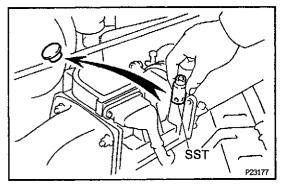
Depth 8.3 mm (0.326 in.)


Depth over 10 mm with a decimal point are abbreviated.


Example:

Inscribed number 15

Depth 11.5 mm (0.453 in.)


EG

- (a) Remove the rubber plug from the air flow meter.
- (b) Measure the depth of the idle mixture adjusting screw with vernier calipers.

- (c) Adjust the depth of the idle mixture adjusting screw by turning the screw with SST.

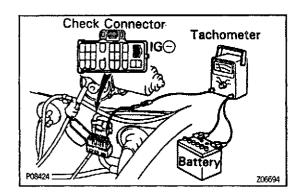
 SST 09243-00020
- (d) Reinstall the rubber plug into the hole of the idle mixture adjusting screw.

IDLE CO CHECK AND ADJUST (Station Wagon Except Europe)

HINT: This check is used only to determine whether or not the idle CO complies with regulations.

1. INITIAL CONDITIONS

- (a) Engine at normal operating temperature
- (b) Air cleaner installed
- (c) All pipes and hoses of air induction system connected
- (d) All accessories switched OFF
- (e) All vacuum lines properly connected
- (f) EFI system wiring connectors fully plugged
- (g) Ignition timing set correctly
- (h) Transmission in neutral position
- (i) Tachometer and CO meter calibrated by hand
- 2. CONNECT TACHOMETER TO ENGINE


NOTICE:

- NEVER allow the tachometer terminal to touch ground as it could result in damage to the igniter and/or ignition coil.
- As some tachometers are not compatible with this ignition system, we recommend that you confirm the compatibility of your unit before use.

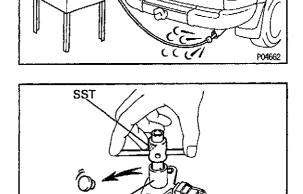
3. CHECK IDLE SPEED

Idle speed:

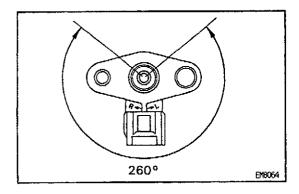
650 ± 50 rpm

CO Meter

Idle Mixture Adjusting // Screw


4. CHECK AND ADJUST CO CONCENTRATION AT IDLE

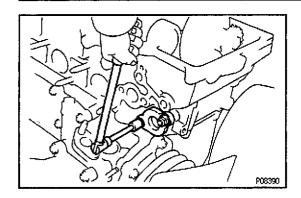
NOTICE: Always use a CO meter when adjusting the idle mixture. It is not necessary to adjust with the idle mixture screw in most vehicles if they are in good condition. If a CO meter is not available, DO NOT ATTEMPT TO ADJUST IDLE MIXTURE.


- (a) Race the engine at 2,500 rpm for approx. 180 seconds.
- (b) Insert a tester probe at least 40 cm (1.3 ft) into the tailpipe.
- (c) Wait at least 1 minute before measuring to allow the concentration to stabilize. Complete the measuring within 3 minutes.

Idle CO concentration:

 $1.5 \pm 0.5 \%$

If the CO concentration does not conform to regulations, adjust by turning the IDLE MIXTURE ADJUSTING SCREW in the variable resistor with SST. SST 09243-00020

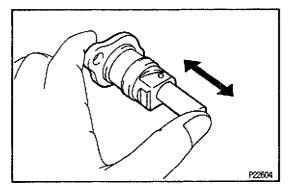


HINT: The idle mixture adjusting screw can be tightened through on angle of 260°.

- If the CO concentration is within specification, this adjustment is complete.
- If the CO concentration cannot be corrected by idle mixture adjustment, see the table below for other possible causes.

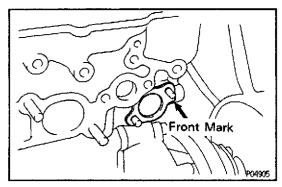
Troubleshooting

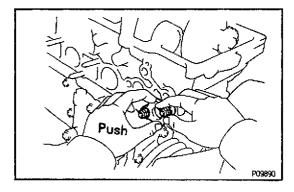
co	Phenomenon	Causes
High	Rough idle (Black smoke from exhaust)	1. Clogged air filter 2. Plugged PCV valve 3. Faulty EFI systems: Faulty pressure regulator Clogged fuel return line Defective water temperature sensor Faulty engine ECU Faulty injectors Faulty throttle position sensor Faulty air flow meter



CYLINDER HEAD CYLINDER HEAD REMOVAL AND **INSTALLATION**

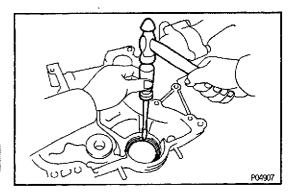
1. REMOVE CHAIN TENSIONER


Remove the 2 nuts, chain tensioner and gasket.



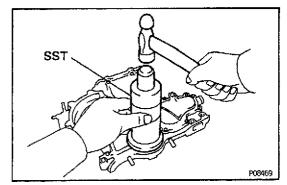
2. INSPECT CHAIN TENSIONER

Check that the plunger moves smoothly.

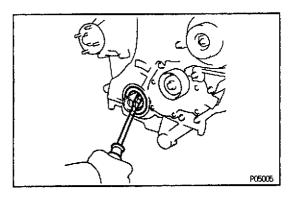

- 3. INSTALL CHAIN TENSIONER
- (a) Place a new gasket so that the front mark is toward the front side.

- (b) Push the tensioner by hand until it touches the head installation surface, then install the 2 nuts.
- (c) Tighten the 2 nuts.

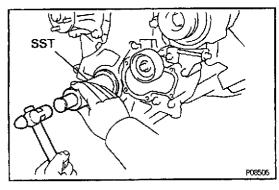
Torque: 21 N·m (210 kgf·cm, 15 ft·lbf)



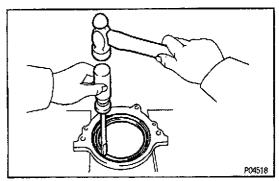
CYLINDER BLOCK CRANKSHAFT OIL SEALS REPLACEMENT


HINT: There are 2 methods (A and B) to replace the oil seal which are as follows:

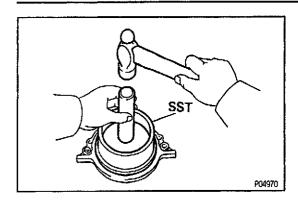
- REPLACE CRANKSHAFT FRONT OIL SEAL
- A. If timing chain cover is removed from cylinder block:
- (a) Using a screwdriver and a hammer, tap out the oil seal.


- (b) Using SST and a hammer, tap in a new oil seal until its surface is flush with the timing chain cover edge. SST 09316-60010 (09316-00010, 09316-00050)
- (c) Apply MP grease to the oil seal lip.

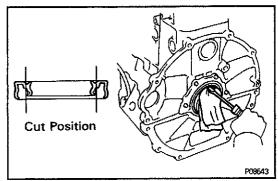
 NOTICE: Do not let foreign matter get onto the lip of the oil seal.



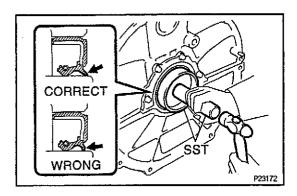
- B. If timing chain cover is installed to cylinder block:
- (a) Using a screwdriver, pry out the oil seal.


 NOTICE: Be careful not to damage the crankshaft. Tape
 the screwdriver tip.

- (b) Apply MP grease to a new oil seal lip. NOTICE: Do not let foreign matter get onto the lip of the oil seal.
- (c) Using SST and a hammer, tap in the oil seal until its surface is flush with the timing chain cover edge. SST 09316-60010 (09316-00010, 09316-00050)



- 2. REPLACE CRANKSHAFT REAR OIL SEAL
- A. If rear oil seal retainer is removed from cylinder block:
- (a) Using a screwdriver and a hammer, tap out the oil seal.


(b) Using SST and a hammer, tap in a new oil seal until its surface is flush with the rear oil seal edge. SST 09223-15030, 09950-70010 (09951-07150) NOTICE: Do not let foreign matter get onto the lip of the oil seal.

- B. If rear oil seal retainer is installed to cylinder block:
- (a) Using a knife, cut off the oil seal lip.
- (b) Using a screwdriver, pry out the oil seal.

 NOTICE: Be careful not to damage the crankshaft. Tape
 the screwdriver tip.

- (c) Using SST and a hammer, tap in a new oil seal until its surface is flush with the rear oil seal retainer edge.

 SST 09223-15030, 09950-70010 (09951-07150)

 NOTICE: Do not let foreign matter get onto the lip of the oil seal.
- (d) Check that the lip of the oil seal is not bent inward.

SERVICE SPECIFICATIONS SERVICE DATA

EGGVT-OF

Compression	at 250 rpm STD	1,176 kPa (12.0 kgf/cm², 171 psi) or more
pressure	Minimum	883 kPa (9.0 kgf/cm², 128 psi)
	Difference of pressure between each cylinder	98 kPa (1.0 kgf/cm², 14 psi) or less
Valve	at cold Intake	0.15 — 0.25 mm (0.006 — 0.010 in.)
clearance	Exhaust	0.25 — 0.35 mm (0.010 — 0.014 in.)
Ignition timing	w/ Terminals TE1 and E1 connected	3° BTDC @ idle
idle speed	_	650 ± 50 rpm
Intake	at idle speed	63 kPa (473 mmHg, 18.6 in.Hg)
manifold		
vacuum		
Cylinder head	Warpage	
	Cylinder block side Maximum	0.15 mm (0.0059 in.)
	Manifold side Maximum	0.10 mm (0.0039 in.)
	Valve seat	
	Refacing angle Intake	30°, 45°, 75°
	Exhausi	45°, 75°
	Contacting angle	45°
	Contacting width Intake	1.2 - 1.6 mm (0.047 - 0.063 in.)
	Exhaust	1.0 - 1.4 mm (0.039 - 0.055 in.)
	Cylinder head bolt outside diameter STD	10.85 - 11.00 mm (0.4272 - 0.4331 in.)
	Limit	10.6 mm (0.417 in.)
Valve guide	Inside diameter	7.010 - 7.030 mm (0.2760 - 0.2768 in.)
bushing	Outside diameter (for repair part) STD	11.492 - 11.513 mm (0.4524 - 0.4533 in.)
	0/\$ 0.05	11.542 - 11.563 mm (0.4544 - 0.4552 in.)
	Protrusion height	8.2 - 8.6 mm (0.323 - 0.339 in.)
Valve	Valve overall length STD Intake	98.4 mm (3.874 in.)
,	Exhausi	97.9 mm (3.854 in.)
	Minimum Intake	97.9 mm (3.854 in.)
	Exhausi	97.4 mm (3.835 in.)
	Vale face angle	44,5°
	Stem diameter Intake	6.970 - 6.985 mm (0.2744 - 0.2750 ln.)
	Exhausi	6.965 - 6.980 mm (0.2742 - 0.2748 in.)
	Stem oil clearance STD Intake	
	Exhaus	
	Maximum Intake	1
	Exhaus	
	Margin thickness STD	
	Minimum	
Valve spring	Deviation Maximum	
raire shing	Free length	43,94 - 45,06 mm (1.7299 - 1.7740 in.)
	Installed tension at 36.5 mm (1.437 in.)	214 - 238 N (21.8 - 24.2 kgf, 48.1 - 53.4 lbf)
Valve lifter	Lifter diameter	33.966 - 33.976 mm (1.3372 - 1.3376 in.)
- dito liite!	Lifter bore diameter	34.000 — 34.021 mm (1.3386 — 1.3394 in.)
	Oil clearance STE	
	1 Oil clediding	
	Maximum	0.07 mm (0.0028 in.)

Air intake	Warpage	Maximum	0.30 mm (0.0118 in.)
chamber			
Camshaft	Thrust clearance	STD	0.030 - 0.080 mm (0.0012 - 0.0031 in.)
		Maximum	0.10 mm (0.0039 in.)
	Journal oil clearance	STD	0.025 - 0.062 mm (0.0010 - 0.0024 in.)
		Maximum	0.10 mm (0.0039 in.)
	Journal diameter		26.959 - 26.975 mm (1.0614 - 1.0620 in.)
	Circle runout	Maximum	0.06 mm (0.0024 in.)
	Cam lobe height	GTS	50.61 - 50.71 mm (1.9925 - 1.9965 in.)
		Minimum	50.51 mm (1.9886 in.)
	Camshaft gear backlash	STD	0.020 - 0.200 mm (0.0008 - 0.0079 in.)
	•	Maximum	0.30 mm (0.0188 in.)
	Camshaft gear spring end free distar	108	18.2 — 18.8 mm (0.717 — 0.740 in.)
Spark plug	Protrusion		45.5 mm (1.791 in.)
tube			
Oil pump	Thrust clearance	STD	0.040 - 0.160 mm (0.0016 - 0.0063 in.)
drive shaft		Maximum	0.30 mm (0.0118 in.)
gear			
Chain and	Chain length at 16 links	Maximum	146.6 mm (5.772 in.)
timing gear	Camshaft timing gear wear (w/ chair	n) Minimum	126.0 mm (4.961 in.)
	Crankshaft timing gear wear (w/ cha	in) Minimum	65.4 mm (2.575 in.)
Chain	Wear	Maximum	1.0 mm (0.039 in.)
tensioner			·
slipper and			
vibration			
damper			
Cylinder block	Cylinder head surface warpage	Maximum	0.05 mm (0.0020 in.)
	Cylinder bore diameter	STD Mark 1	100.000 — 100.010 mm (3.9370 — 3.9374 in.)
		Mark 2	100.010 - 100.020 mm (3.9374 - 3.9378 in.)
		Mark 3	100.020 — 100.030 mm (3.9378 — 3.9382 in.)
		Maximum STD	100.23 mm (3.9461 in.)
		O/\$ 0.50	100.73 mm (3.9658 in.)
		0/\$ 1.00	101.23 mm (3.9854 in.)
	Main bearing bolt outside diameter	STD	10.85 — 11.00 mm (0.4271 — 0.4331 in.)
		Minimum	10.6 mm (0.417 in.)
Piston and	Piston diameter	STD Mark 1	99.950 — 99.960 mm (3.9350 — 3.9354 in.)
piston ring		Mark 2	99.960 — 99.970 mm (3.9354 — 3.9358 in.)
		Mark 3	99.970 — 99.980 mm (3.9358 — 3.9362 in.)
		0/\$ 0.50	100.450 — 100.480 mm (3.9547 — 3.9559 in.)
		0/\$ 1.00	100.950 - 100.980 mm (3.9744 - 3.9756 in.)
	Piston oil clearance	STD	0.040 - 0.060 mm (0.0016 - 0.0024 in.)
	Piston ring groove clearance	No.1	0.040 - 0.080 mm (0.0016 - 0.0031 in.)
		No.2	0.030 - 0.070 mm (0.0012 - 0.0028 in.)
	Piston ring end gap	STD No.1	0.300 — 0.520 mm (0.0118 — 0.0205 in.)
		No.2	0.450 — 0.670 mm (0.0177 — 0.0264 in.)
		Oil	0.150 - 0.520 mm (0.0059 - 0.0205 in.)
		Maximum No.1	1.12 mm (0.0441 in.)
		No.2	1.17 mm (0.0461 in.)
		Oil	1.12 mm (0.0441 in.)

Connecting	Thrust clearance STD	0.160 - 0.262 mm (0.0063 - 0.0103 in.)
rod	Maximum	0.362 mm (0.0143 in.)
	Connecting rod bearing center wall thickness	
	Reference STD Mark 2	1.744 - 1.747 mm (0.0687 - 0.0688 in.)
	Mark 3	1.747 - 1.750 mm (0.0688 - 0.0689 in.)
	Mark 4	1.750 — 1.753 mm (0.0689 — 0.0690 in.)
	Mark 5	1.753 — 1.756 mm (0.0690 — 0.0691 in.)
ĺ	Mark 6	1.756 — 1.759 mm (0.0691 — 0.0693 in.)
	Connecting rod oil clearance STD STD	0.032 - 0.050 mm (0.0013 - 0.0020 in.)
	U/S 0.25	0.033 — 0.073 mm (0.0013 — 0.0029 in.)
	Maximum	0.10 mm (0.0039 in.)
	Rod bend Maximum per 100 mm (3.94 in.)	0.05 mm (0.0020 in.)
	Rod twist Maximum per 100 mm (3.94 in.)	0.15 mm (0.0059 in.)
	Bushing inside diameter	26.008 — 26.020 mm (1.0239 — 1.0244 in.)
	Piston pin diameter	26.000 — 26.012 mm (1.0236 — 1.0241 in.)
	Piston pin oil clearance STD	0.004 - 0.012 mm (0.0002 - 0.0005 in.)
	Limit	0.05 mm (0.0020 in.)
	Connecting rod bolt outside diameter STD	8.40 - 8.60 mm (0.3307 - 0.3386 in.)
	Minimum	8.00 mm (0.3150 in.)
Crankshaft	Thrust clearance STD	0.020 — 0.220 mm (0.0008 — 0.0087 in.)
	Maximum	0,30 mm (0.0118 in.)
	Thrust washer thickness STD	2.440 — 2.490 mm (0.0961 — 0.0980 in.)
	0/8 0.125	2.503 — 2.553 mm (0.0985 — 0.1005 in.)
	0/8 0.250	2.565 — 2.615 mm (0.1010 — 0.1030 in.)
	Main journal oil clearance STD STD	0.042 - 0.060 mm (0.0017 - 0.0024 in.)
	U/S 0.25	0.041 — 0.081 mm (0.0016 — 0.0032 in.)
	Maximum	0.10 mm (0.0039 in.)
	Main journal diameter STD	68.982 — 69.000 mm (2.7158 — 2.7165 in.)
	U/S 0.25	68.745 — 68.755 mm (2.7065 — 2.7069 in.)
	Main bearing center wall thickness	
	Reference STD Mark 2	2.489 - 2.492 mm (0.0980 - 0.0981 in.)
	Merk 3	2.492 — 2.495 mm (0.0981 — 0.0982 in.)
	Mark 4	2.495 - 2.498 mm (0.0982 - 0.0983 in.)
	Mark 5	2.498 — 2.501 mm (0.0983 — 0.0985 in.)
	Mark 6	2.501 — 2.604 mm (0.0985 — 0.0986 in.)
	Crank pin diameter STD	56.982 — 57.000 mm (2.2434 — 2.2441 in.)
	U/S 0.25	56.745 — 56.755 mm (2.2341 — 2.2344 in.)
	Circle runout Maximum	0.06 mm (0.0024 in.)
	Main journal taper and out-of-round Maximum	0.02 mm (0.0008 in.)
	Crank pin taper and out-of -round Maximum	0.02 mm (0.0008 in.)

TORQUE SPECIFICATIONS

Part tightened N-m kgf-om ft-lbf
Chain tensioner x Cylinder head 21 210 15

EFI SYSTEM

PREPARATION

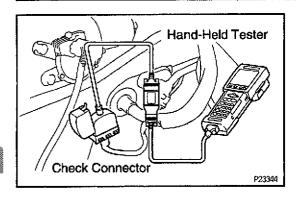
SST (SPECIAL SERVICE TOOLS)

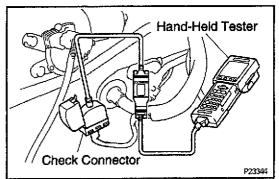
EGOCF-11

09243-00020	Idle Adjusting Screw Wrench	
09843-18020	Diagnosis Check Wire	

RECOMMENDED TOOLS

EGOCG -01


09082-00050 TOYOTA Electrical Tester Set.

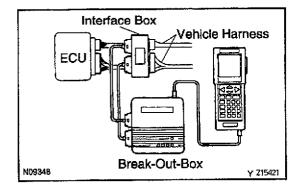

EQUIPMENT

EGOCH-OV

Torque wrench	

DIAGNOSIS SYSTEM DIAGNOSTIC CODE CHECK USING HAND - HELD TESTER

- Hook up the hand—held tester to the check connector.
- 2. Read the diagnostic codes by following the prompts on the tester screen.


Please refer to the hand-held tester operator's manual for further details.

ECU DATA MONITOR USING HAND—HËLD TESTER

- 1. Hook up the hand—held tester to the check connector.
- 2. Monitor the ECU data by following the prompts on the tester screen.

HINT: Hand-held tester has a "Snapshot" function which records the monitored data.

Please refer to the hand—held tester operator's manual for further details.

ECU TERMINAL VALUES MEASUREMEÑT USING BREAK-OUT-BOX AND HAND-HELD TESTER

- Hook up the break—out—box and hand—held tester to the vehicle.
- 2. Read the ECU input/output values by following the prompts on the tester screen.

HINT: Hand—held tester has a "Snapshot" function. This records the measured values and is effective in the diagnosis of intermittent problems.

Please refer to the hand-held tester/break-out-box operator's manual for further details.

EG 5840 -- 01

DIAGNOSTIC CODES (Station Wagon)

HINT:

- If a malfunction is detected during the diagnostic code check, refer to the circuit indicated in the table, and turn to the corresponding page.
- Your readings may vary from the parameters listed in the table, depending on the instruments used.

Code	Number of			CHECK" Engine*1 Warning Light			!
No.	"CHECK" Engine Warning Light Blinks	System	Normal Mode	Test Mode	- Diagno si s	Trouble Area	Memory*2
_		Normal	-	-	No malfunctions detected.	-	_
12	F11606	RPM Signal	ON	N.A.	No "NE" or "G1", "G2" signal to ECU for 2 sec. or more after cranking the engine.	Distributor circuit Distributor Starter signal circuit ECU	0
13	F11507	RPM Signal	ON	ON	No "NE" signal to ECU for 0.05 sec. or more when engine speed is above 1,000 rpm.	Distributor circuit Distributor ECU	0
14		Ignition Signal	ON	N.A.	No "IGF" signal to ECU 6 times In succession, and no signal input within 256 msec.	Igniter and Ignition coil circuit Igniter and ignition coil ECU	0
16*3	F13600	ECT Control Signal	ON	N.A.	Normal signal is not output from ECT CPU.	• ECU	0
21*4		Oxygen Sensor Signal	ON	ON	At normal driving speed (below 100 km/h and engine speed is above 1,400 rpmł, amplitude of oxygen sensor signal (OX1) is reduced to between 0.35 – 0.70 V continuously for 60 seconds or more. (2 trip detection logic)	Oxygen sensor circuit Oxygen sensor ECU	0
	Fi1609	Oxygen Sensor Heater Signal			Open or short circuit in oxygen sensor heater for 0.5 sec. or more. (HT1)	Oxygen sensor circuit Oxygen sensor ECU	0
22		Water Temp. Sensor Signal	ON	ON	Open or short circuit in water temp, sensor signal for 0.5 sec. or more. (THW)	Water temp, sensor circuit Coolent temp, sensor ECU	0
24		Intake Air Temp. Sensor Signal	OFF	ON	Open or short circuit in intake air temp. sensor signal for 0.5 sec. or more. (THA)	Intake air temp. sensor circuit Intake air temp. sensor ECU	0
25*4		Air-Fuel Ratio Lean Malfunction	ON	ON	Oxygen sensor output in less than 0.45 V for at least 90 secs, when oxygen sensor is warmed up (racing at 1,500 rpm). (2 trip detection logic)	Engine ground bolt loose Open in E1 circuit Injector circuit Injector Fuel line pressure Air flow meter Oxygen sensor circuit Oxygen sensor Ignition system ECU	0
31		Air Flow Meter Signal	ON	N.A.	Open or short in air flow meter circuit for 16 sec. or more with engine speed less than 3,000 rpm.	Air flow meter circuit Air flow meter ECU	0

DIAGNOSTIC CODES (Station Wagon) (Cont'd)

Code	Number of	S4	"CHECK" Warnin	Engine* ¹ g Light	Diagnosis	Trouble Area	Memory*2
No.	"CHECK" Engine Warning Light Blinks	Şystem	Normal Mode	Test Mode	plagnosis	irouple Area	
41		Throttle Position Sensor Signal	OFF	ON	Open or short circuit in throttle position sensor signal for 0.5 sec. or more.	TP sensor circuit TP sensor ECU	0
42		Vehicle Speed Sensor Signal	OFF	OFF	For ECT All conditions below are detected continuously for 8 sec. or more. (a) No. 1 speed signal: 0 km/h (mph) (b) Engine speed: 2,450 rpm or more (c) Neutral start switch: OFF (d) Stop light switch: OFF	Vehicle speed sensor circuit Vehicle speed sensor ECU	0
	F11615				All conditions below are detected continuously for 8 sec. or more. (a) No. 1 speed signal: 0 km/h (mph) (b) Engine speed: Between 2,300 rpm and 4,000 rpm (c) Water temp.: 80°C (176°F) or more (d) Load driving		
43		Starter Signal	N.A.	OFF	Starter signal (STA) is not input to ECU until TE1 and E1 are connected.	Ignition switch circuit Ignition switch ECU	×
52		No. 1 Knock Sensor Signal (front side)	ON	N.A.	No No. 1 Knock sensor signal to ECU for 8 crank revolutions with engine speed between 1,920 rpm and 5,200 rpm.	Open or short in No. 1 knock sensor circuit. No. 1 knock sensor (looseness) ECU	0
53		Knock Control Signal	ON	N.A.	No knock control signal to ECU for 6 crank revolutions with engine speed between 1,800 rpm and 5,200 rpm.	• ECU	x
55		No. 2 Knock Sensor Signal (rear side)	ON	N.A.	No No. 2 knock sensor signal to ECU for 8 crank revolutions with engine speed between 1,920 rpm and 5,200 rpm.	Open or short in No. 2 knock sensor circuit No. 2 knock sensor (looseness) ECU	0
51		Switch Condition Signal	N.A.	OFF	No "IDL" signal, "NSW" signal or "A/C" signal to ECU with the check connector terminals E1 and TE1 connected.	Throttle position sensor IDL circuit Accelerator pedal and cable Neutral start switch A/C switch circuit ECU	x

REMARKS:

- "ON" displayed in the diagnosis mode column indicates that the check engine warning light is lit up when a malfunction is detected. "OFF" indicates that the check engine warning light does not light up during malfunction diagnosis, even if a malfunction is detected. "N.A." indicates that the item is not included in malfunction diagnosis.
- "O" in the memory column indicates that a diagnostic code is recorded in the ECU memory when a malfunction occurs. "X" indicates that a diagnostic code is not recorded in the ECU memory even if a malfunction occurs. Accordingly, output of diagnostic results in normal or test mode is performed with the ignition switch ON.
- *3 A/T only
- *4 Europe only

DIAGNOSTIC CODES (Hardtop)

HINT:

- If a malfunction is detected during the diagnostic code check, refer to the circuit indicated in the table, and turn to the corresponding page.
- Your readings may vary from the parameters listed in the table, depending on the instruments used.

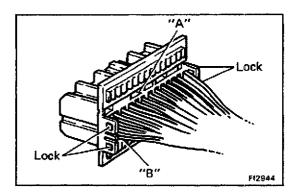
Code	Number of			CK" Engine*1 Iming Light			
No.	"CHECK" Engine Warning Light Blinks	System	Normal Mode	Test Mode	Diagnosis	Trouble Area	Memory*2
_		Normal	_	-	No malfunctions detected.		_
12		RPM Signal	ON	N.A.	No "NE" or "G1", "G2" signal to ECU for 2 sec. or more after cranking the engine.	Distributor circuit Distributor Starter signal circuit ECU	0
13	F11607	RPM Signal	ON	ON	No "NE" signal to ECU for 0.05 sec. or more when engine speed is above 1,000 rpm.	Distributor circuit Distributor ECU	0
14		Ignition Signal	ON	N.A.	No "IGF" signal to ECU 8 times in succession, and no signal input put within 256 msec.	Igniter and ignition coil circuit Igniter and ignition coil ECU	0
22		Weter Temp. Sensor Signal	ON	ON	Open or short circuit in water temp, sensor signal for 0.5 sec. or more. (THW)	Water temp. sensor circuit Coolant temp. sensor ECU	0
24	F11611	Intake Air Temp. Sensor Signal	OFF	ON	Open or short circuit in Intake air temp. sensor signal for 0.5 sec. or more. (THA)	Intake air temp, sensor circuit Intake air temp, sensor ECU	0
31		Air Flow Meter Signal	ON	ON	When idle contacts are closed and engine speed is 1,500 rpm or less, there is an open circuit in VC and VS signal or a short circuit between VS and E2.	Air flow meter circuit Air flow meter ECU	0
32		Air Flow Meter Signal	ON	ON	Open circuit in E2 or short circuit between VC and VS.	Air flow meter circuit Air flow meter ECU	0
41		Throttle Position Sensor Signal	OFF	ON	Open or short circuit in throttle position sensor signal for 0.5 sec. or more.	TP sensor circuit TP sensor ECU	0
42		Vehicle Speed Sensor Signal	OFF	Q F F	No "SPD" signal for 8 seconds when engine speed 2,700 rpm or more and with vehicle not moving.	Vehicle speed sensor circuit Vehicle speed sensor ECU	0
43	Fite16	Starter Signal	N.A.	OFF	Starter signal (STA) is not input to ECU until TE1 and E1 are connected.	Ignition switch circuit Ignition switch ECU	x

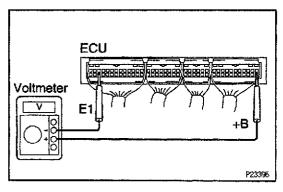
DIAGNOSTIC CODES (Hardtop) (Cont'd)

Code	Number of	Number of "CHECK" Engine System	"CHECK" Engine*1 Werning Light		Diagnosis	Trouble Area	Memory*2
No.	"GHEGK" Engine Warning Light Blinks	Shateu	Normal Mode	Test Mode	Diagnosia	Trouble Alve	Memory
52		No. 1 Knock Sensor Signal (front side)	ON	N.A.	No No. 1 knock sensor signal to ECU for 6 crank revolutions with engine speed between 1,800 rpm and 5,200 rpm.	Open or short in No. 1 knock sensor circuit. No. 1 knock sensor (looseness) ECU	0
53		Knock Control Signal	ON	N.A.	No knock control signal to ECU for 12 crank revolutions with engine speed between 1,800 rpm and 5,200 rpm.	• ECU	x
55		No. 2 Knock Sensor Signal (rear side)	ON	N.A.	No No. 2 knock sensor signal to ECU for 6 crank revolutions with engine speed between 1,800 rpm and 5,200 rpm.	Open or short in No. 2 knock sensor circuit No. 2 knock sensor (looseness) ECU	0
51		Switch Condition Signal	N.A.	OFF	No "IDL" signal, "NSW" signal or "A/C" signal to ECU with the check connector terminals E1 and TE1 connected.	Throttle position sensor IDL circuit Accelerator pedal and cable Neutral start switch A/C switch circuit ECU	×

REMARKS:

- "ON" displayed in the diagnosis mode column indicates that the check engine warning light is lit up when a malfunction is detected. "OFF" indicates that the check engine warning light does not light up during malfunction diagnosis, even if a malfunction is detected. "N.A." indicates that the item is not included in malfunction diagnosis.
- "O" in the memory column indicates that a diagnostic code is recorded in the ECU memory when a malfunction occurs. "X" indicates that a diagnostic code is not recorded in the ECU memory even if a malfunction occurs. Accordingly, output of diagnostic results in normal or test mode is performed with the ignition switch ON.


TROUBLESHOOTING w/ VOLT, OHMMETER (Station Wagon)


HINT:

EGOGB-04

EG

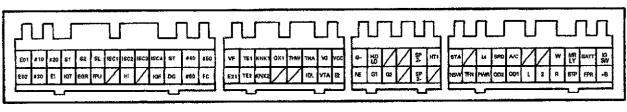
- The following troubleshooting procedures are designed for inspection of each separate system, and therefore the actual procedure may vary somewhat. However, troubleshooting should be performed while referring to the inspection methods described in this manual.
- Before beginning inspection, it is best to first make a simple check of the fuses, H—fuses, fusible links and the condition of the connectors.
- The following troubleshooting procedures are based on the supposition that the trouble lies in either a short or open circuit within the computer.
- If engine trouble occurs even though proper operating voltage is detected in the computer connector, then it can be assumed that the ECU is faulty and should be replaced.

EFI SYSTEM CHECK PROCEDURE

EGOGA - 04

PREPARATION

- (a) Disconnect the connectors from the ECU.
- (b) Remove the locks as shown in the illustration so that the tester probe(s) can easily come in. NOTICE: Pay attention to sections "A" and "B" in the illustration which can be easily broken.
- (c) Reconnect the connectors to the ECU.
- (d) Using a voltmeter with high impedance (10 kΩ/V minimum), measure the voltage at each terminal of the wiring connectors.

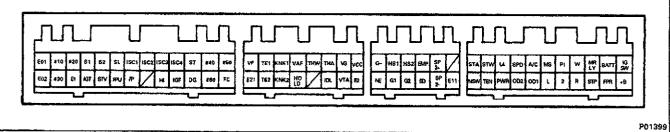

HINT:

- Perform all voltage measurements with the connectors connected.
- Verify that the battery voltage is 11 V or more when the ignition switch is in "ON" position.

ECU Terminals (Europe)

Symbol	Connection	Symbol	Connection	Symbol	Connection	
E01	POWER GROUND	VF	CHECK CONNECTOR	HT1	OXYGEN SENSOR	
E02	POWER GROUND	E21	AIR FLOW METER		-	
#10	INJECTOR (No.1)	TE1	CHECK CONNECTOR	STA	NEUTRAL START SWITCH	
#30	INJECTOR (No.3)	TE2	CHECK CONNECTOR	NSW	IGNITION SWITCH	
#20	INJECTOR (No.2)	KNK1	NO.1 KNOCK SENSOR		-	
E 1	ECU GROUND	KNK2	NO.2 KNOCK SENSOR	TFN*	TRANSFER NEUTRAL POSITION SWITCH	
S1*	ECT SOLENOID	OX1	OXYGEN SENSOR	L4*	L4 POSITION SENSOR	
IGT	IGNITER		_	PWR*	PATERN SELECT SWITCH	
S2*	ECT SOLENOID	THW	WATER TEMP. SENSOR	SPD	NO.1 VEHICLE SPEED SENSOR	
EGR	VSV FOR EGR		_	OD2*	O/D MAIN SWITCH	
SL*	ECT SOLENOID	THA	AIR FLOW METER	A/C	A/C AMPLIFIE	
FPU	VSV FOR FUEL PRESSURE CONTROL	IDL	TP SENSOR	OD1*	CRUISE CONTROL ECU	
ISC1	ISC VALVE (No.1 Motor Coil)	VG	AIR FLOW METER		-	
	-	VTA	TP SENSOR	L*	NEUTRAL START SWITCH	
ISC2	ISC VALVE (No.2 Motor Coil)	vcc	TP SENSOR		-	
H1*	HOLD INDICATOR LIGHT	E2	SENSOR GROUND	2*	NEUTRAL START SWITCH	
ISC3	ISC VALVE (No.3 Motor Coil)	G -	DISTRIBUTOR	w	"CHECK" ENGINE WARNING LIGHT	
	_	NE	DISTRIBUTOR	R*	NEUTRAL START SWITCH	
ISC4	ISC VALVE (No.4 Motor Coil)	HOLD*	PATTERN SELECT SWITCH	MRLY	EFI MAIN RELAY (COIL)	
IGF	IGNITER	G1	DISTRIBUTOR	STP	STOP LIGHT SWITCH	
ST*	ECT SOLENOID		_	BATT	BATTERY B +	
DG*	CHECK CONNECTOR	G2	DISTRIBUTOR	FPR	FUEL PUMP RELAY	
#40	INJECTOR (No.4)		-	IGSW	IGNITION SWITCH	
#60	INJECTOR (No.6)		-	+B	EFI MAIN RELAY	
#50	INJECTOR (No.5)	SP2+*	NO.2 VEHICLE SPEED SENSOR	* Only for	ECT	
FC	CIRCUIT OPENING RELAY	SP2-*	NO.2 VEHICLE SPEED SENSOR			

ECU Terminals

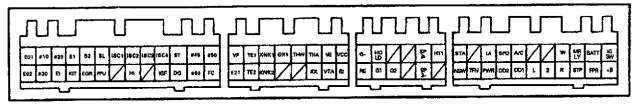

P01399

EG

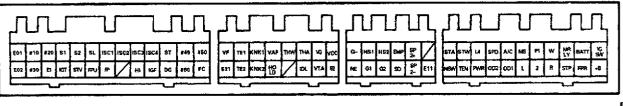
ECU Terminals (Except Europe)

Symbol	Connection	Symbol	Connection	Symbol	Connection	
E01	POWER GROUND	VF	CHECK CONNECTOR		-	
E02	POWER GROUND	E21	AIR FLOW METER	E11	SENSOR GROUND	
#10	INJECTOR (No.1)	TE1	CHECK CONNECTOR	STA	NEUTRAL START SWITCH	
#30	INJECTOR (No.3)	TE2	CHECK CONNECTOR	NSW	IGNITION SWITCH	
#20	INJECTOR (No.2)	KNK1	NO.1 KNOCK SENSOR	stw	SUB TANK WARNING LIGHT	
E 1	ECU GROUND	KNK2	NO.2 KNOCK SENSOR	TFN*	TRANSFER NEUTRAL POSITION SWITCH	
S1*	ECT SOLENOID	VAF	VARIABL RESISTOR	L4*	L4 POSITION SENSOR	
IGT	IGNITER	HOLD*	PATERN SELECT SWITCH	PWR*	PATERN SELECT SWITCH	
\$2*	ECT SOLENOID	THW	WATER TEMP. SENSOR	SPD	VEHICLE SPEED SENSOR	
STV	SUB FUEL TANK VALVE		_	OD2*	O/D MAIN SWITCH	
SL*	ECT SOLENOID	AHT	AIR FLOW METER	A/C	A/C AMPLIFIE	
FPU	VSV FOR FUEL PRESSURE CONTROL	IDL	TP SENSOR	OD1*	CRUISE CONTROL ECU	
ISC1	ISC VALVE (No.1 Motor Coil)	VG	AIR FLOW METER	MS	FUEL MAIN SWITCH	
FP	SUB FUEL TANK PUMP	VTA	TP SENSOR	L*	NEUTRAL START SWITCH	
ISC2	ISC VALVE (No.2 Motor Coil)	vcc	TP SENSOR	PI	FUEL MAIN SWITCH	
		E2	SENSOR GROUND	2*	NEUTRAL START SWITCH	
ISC3	ISC VALVE (No.3 Motor Coil)	G-	DISTRIBUTOR	w	"CHECK" ENGINE WARNING LIGHT	
HI*	HOLD INDICATOR LIGHT	NE	DISTRIBUTOR	R*	NEUTRAL START SWITCH	
ISC4	ISC VALVE (No.4 Motor Coil)	HS1	TOP SWITCH	MRLY	EFI MAIN RELAY (COIL)	
IGF	IGNITER	G1	DISTRIBUTOR	STP	STOP LIGHT SWITCH	
ST*	ECT SOLENOID	HS2	TOP SWITCH	BATT	BATTERY B +	
DG*	CHECK CONNECTOR	Ģ2	DISTRIBUTOR	FPR	FUEL PUMP SWITCH	
#40	INJECTOR (No.4)	EMP	SUB FUEL SWITCH	IGSW	IGNITION SWITCH	
#60	INJECTOR (No.6)	SD	FUEL SENDER GAUGE	+B	EFI MAIN RELAY	
#50	INJECTOR (No.5)	SP2+*	NO.2 VEHICLE SPEED SENSOR	* Only for ECT		
FC	CIRCUIT OPENING RELAY	SP2-*	NO.2 VEHICLE SPEED SENSOR			

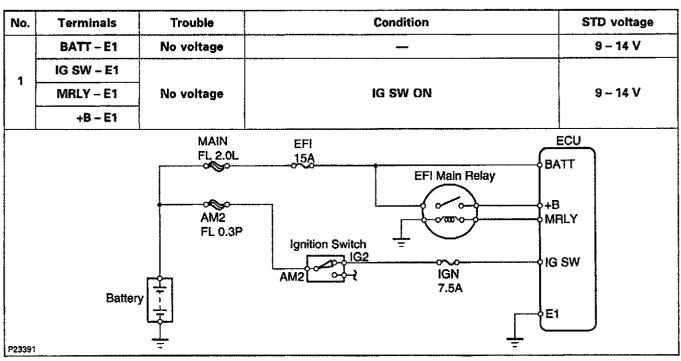
ECU Terminals

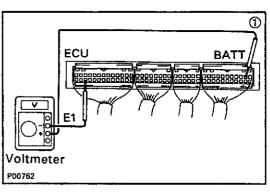


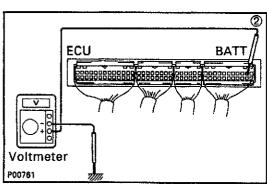
ECU Wiring Connectors Voltage

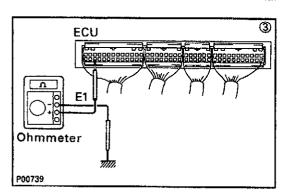

No.	Terminals		Condition	STD voltage (V)	See page
	BATT – E1		-		
	IG SW – E1			9 – 14	EG-23
1	MRLY E1	IG SW ON			-0.20
	+B – E1]			
	IDL – E2		Throttle valve open	9 – 14	
	VCC - E2		NA.	4.5 – 5.5	
2	2 VTA – E2	IG SW ON Throttle valve fully closed (Throttle opener must be canc	Throttle valve fully closed (Throttle opener must be cancelled first)	0.3 - 0.8	EG-26
	VIA-EZ		Throttle valve fully open	3.2 – 4.9	
3	VG – E21	Idling	N position, A/C switch OFF	1,1 – 1.5	EG-28
4	#10 E01 - E02	IG SW ON		9-14	EG-29
5	THA – E2	IC CIN ON	Intake air temp. 20°C (68°F)	0.5 - 3.4	EG-30
6	THW - E2	IG SW ON	Engine coolant temp. 80°C (176°F)	0.2 – 1.0	EG-31
7	STA - E1	Cranking		6 or more	EG-32
8	IGT – E1	ldling		Pulse generation	EG-33
9	ISC1	IG SW ON		9 – 14	EG-34
10	W – E1	No trouble (*c	CHECK" engine warning light off) and engine	9 – 14	EG-35

ECU Terminals

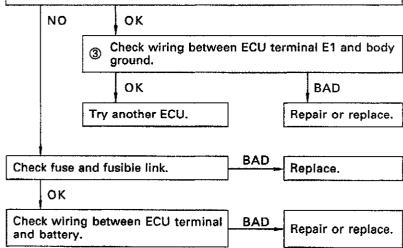


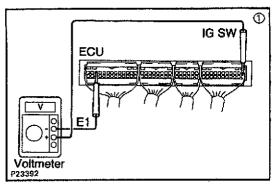


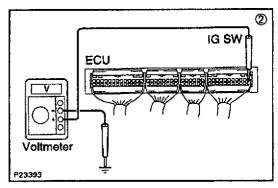

Except Europe



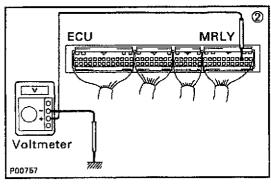
P01399 P01399

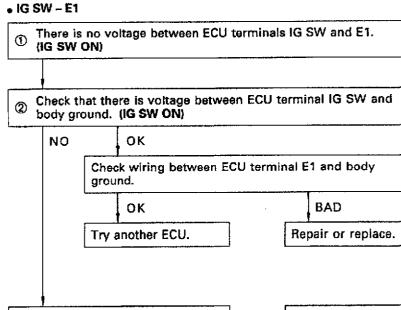


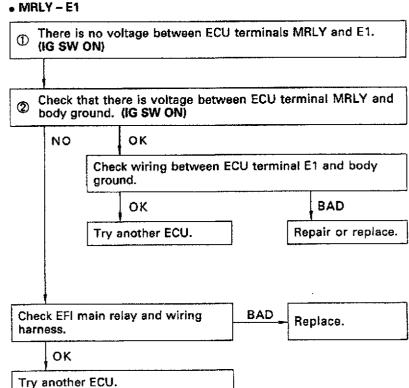


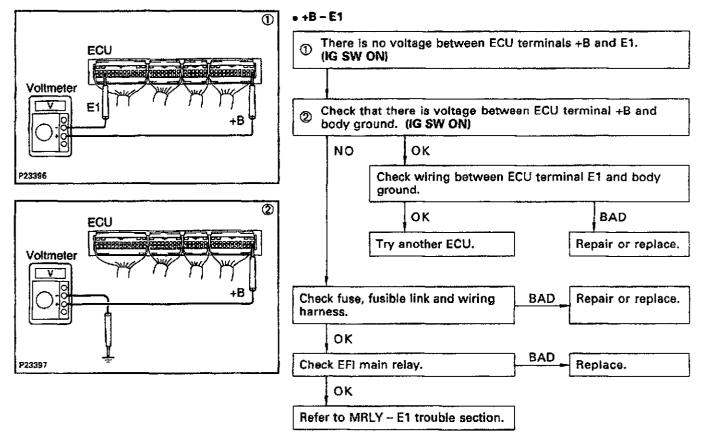

• BATT - E1


There is no voltage between ECU terminals BATT and E1.


Check that there is voltage between ECU terminal BATT and body ground.

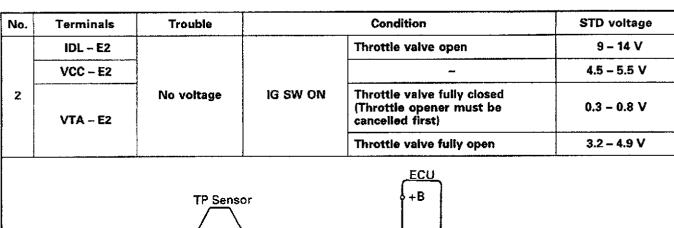


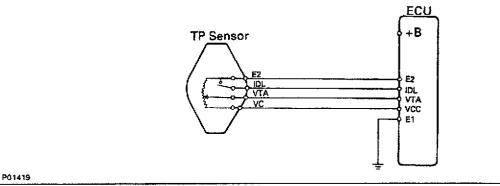


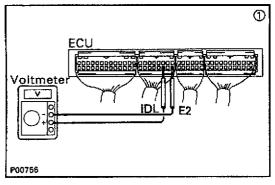

BAD

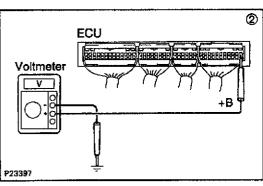
Repair or replace.

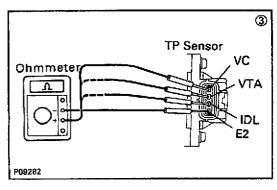
Check fuses, fusible link and ignition

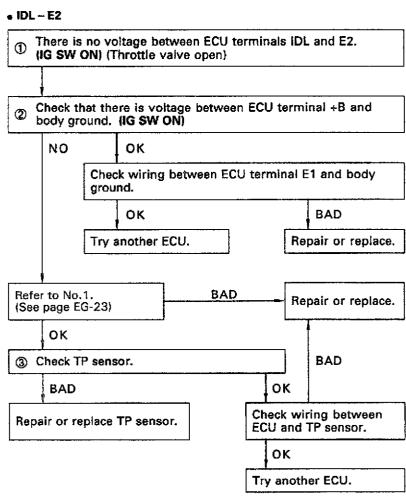

switch.

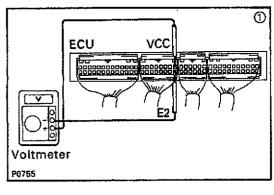


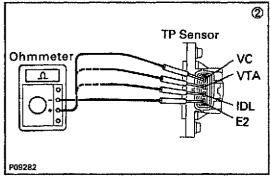


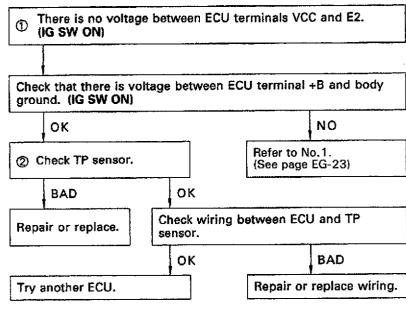


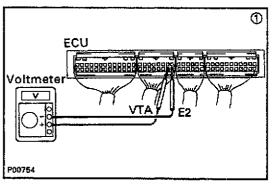

59860000

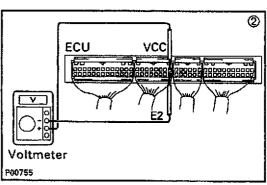


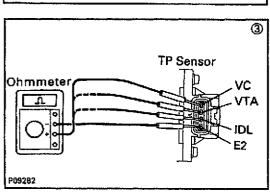


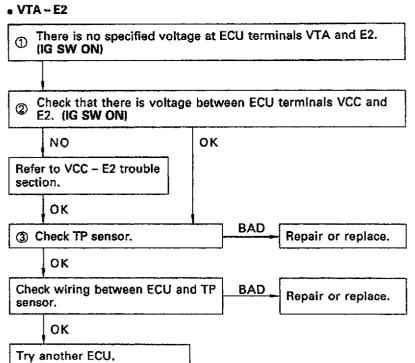


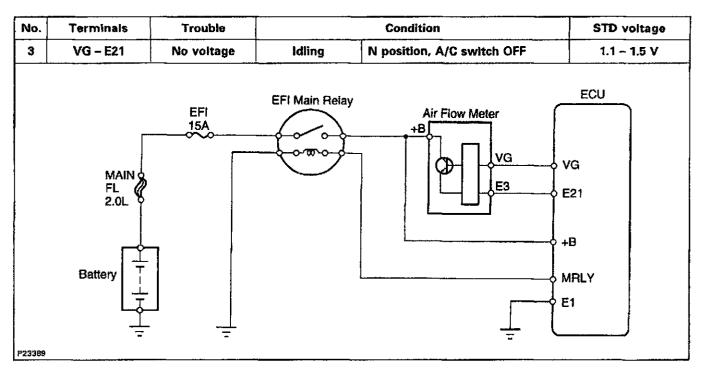


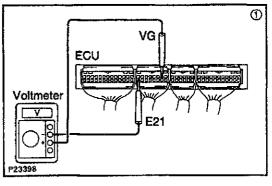


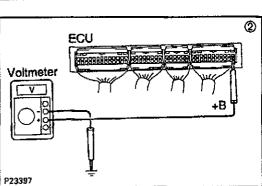

VC - E2

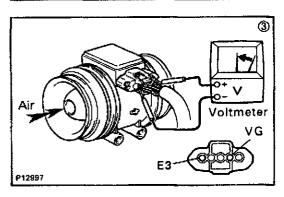


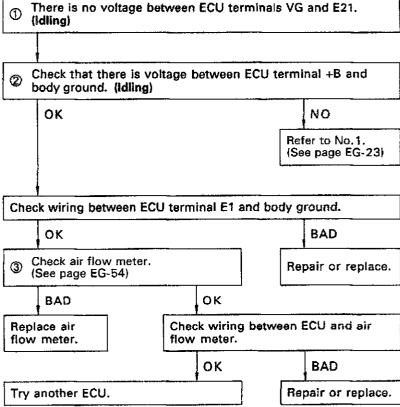


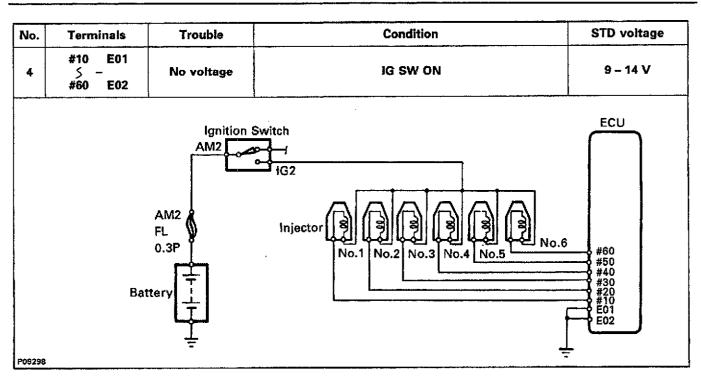


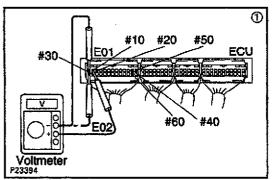


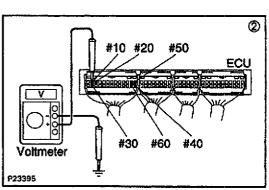


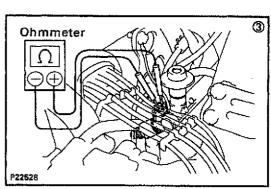


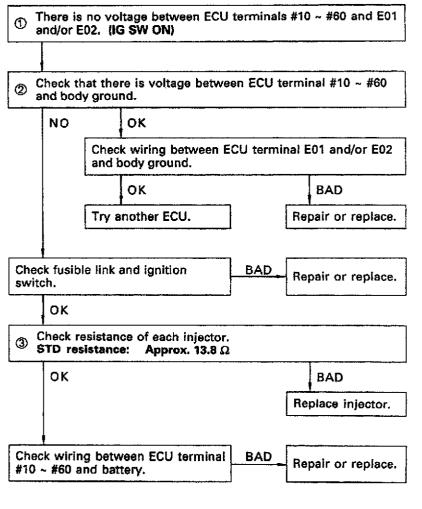


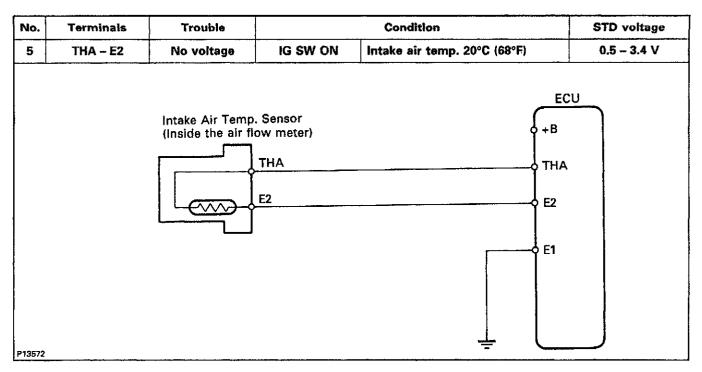


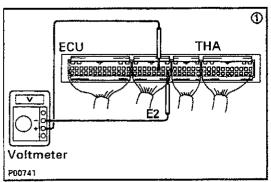


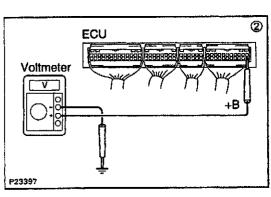


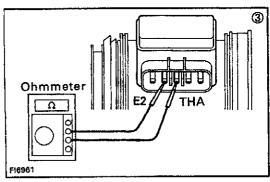


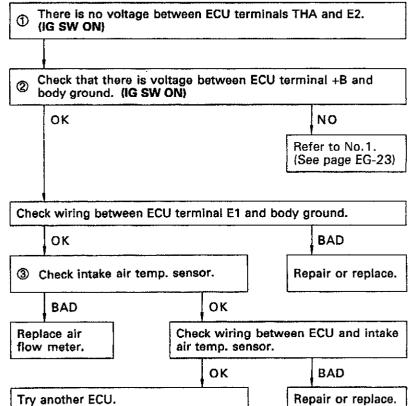


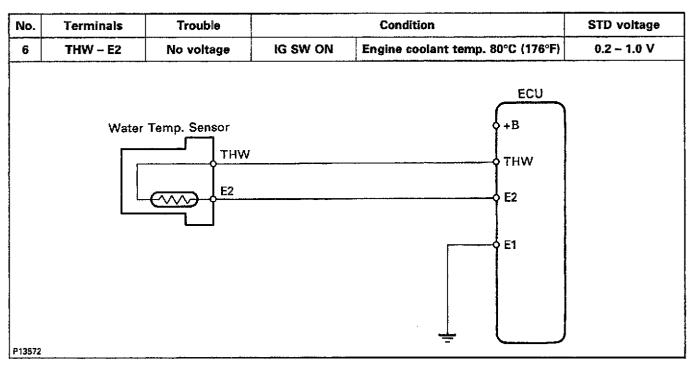


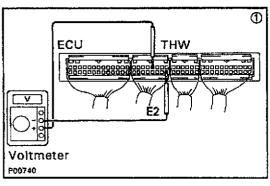


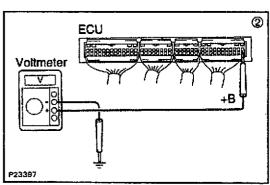


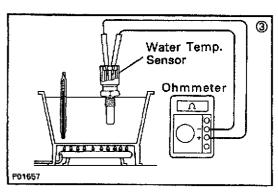


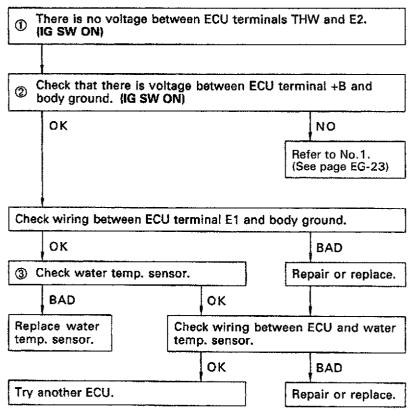


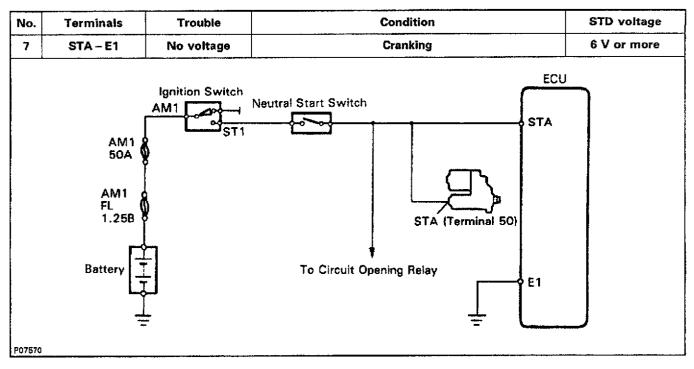


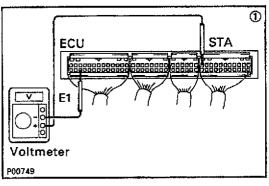


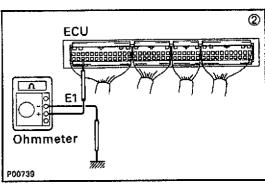


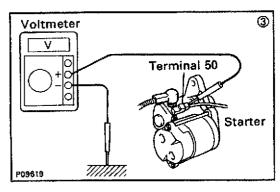


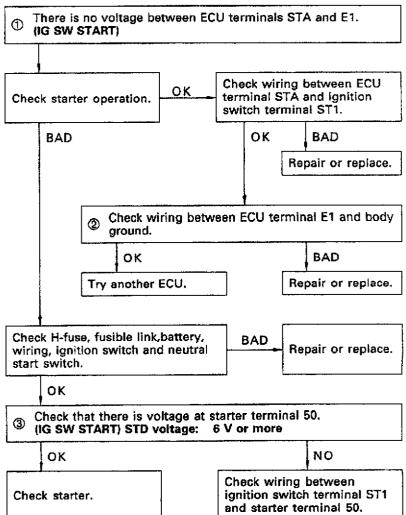


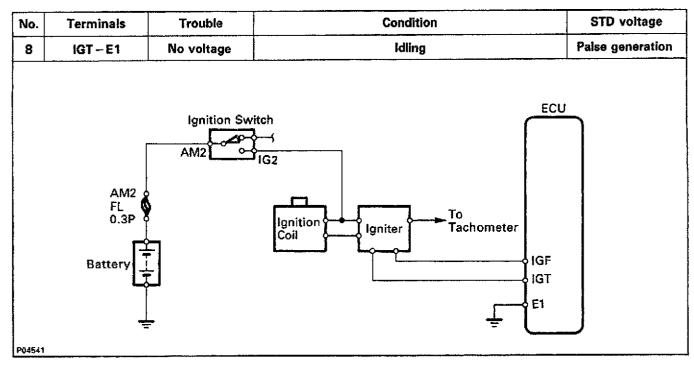


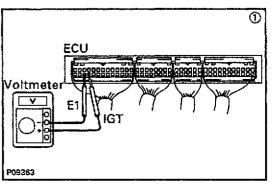


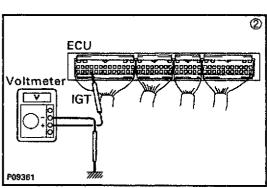


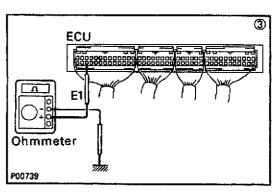


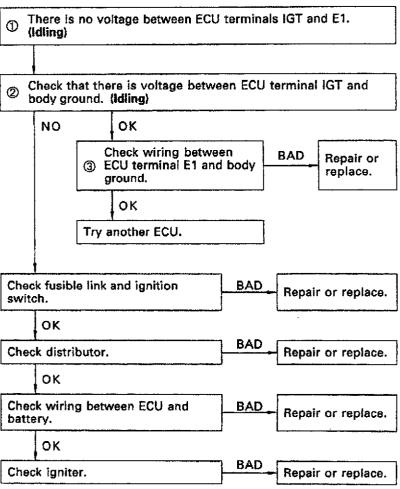


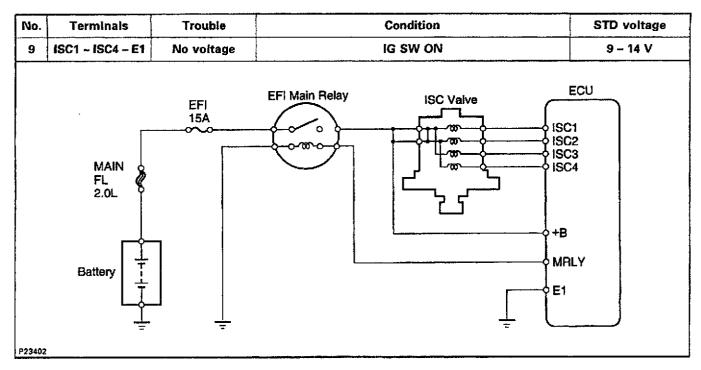


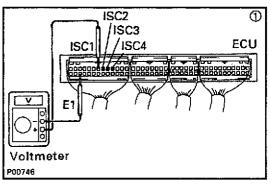


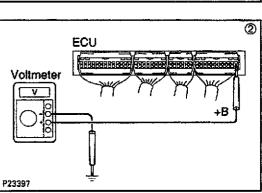


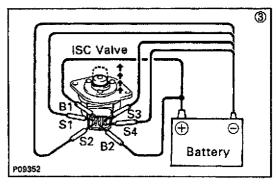


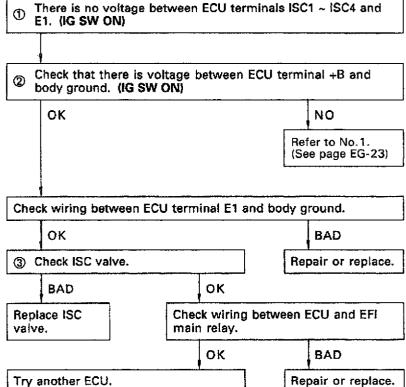


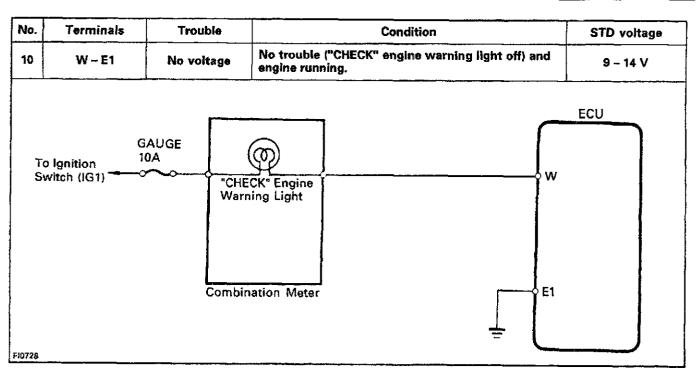


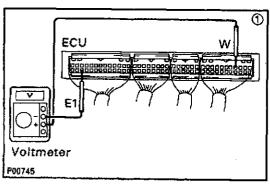




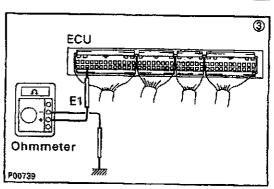


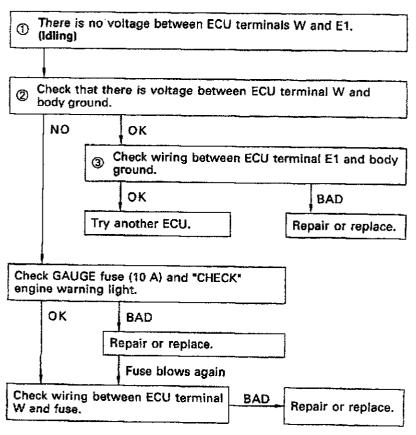


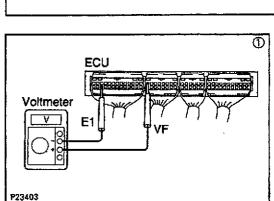


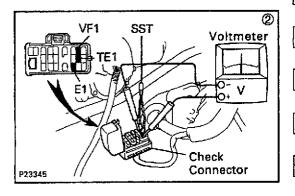


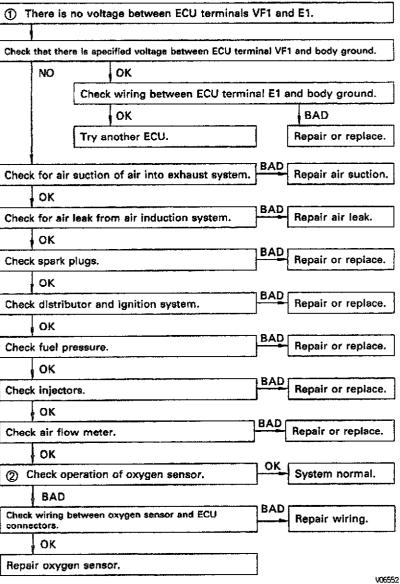


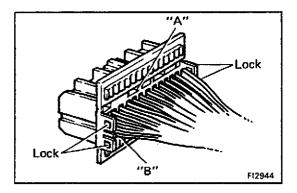

Repair or replace.

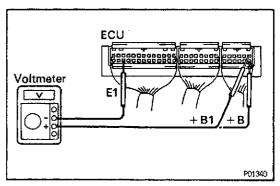









G


TROUBLESHOOTING w/ VOLT, OHMMETER (Hardtop)

HINT:

EG27R-02

- The following troubleshooting procedures are designed for inspection of each separate system, and therefore the actual procedure may vary somewhat. However, troubleshooting should be performed while referring to the inspection methods described in this manual.
- Before beginning inspection, it is best to first make a simple check of the fuses, H—fuses, fusible links and the condition of the connectors.
- The following troubleshooting procedures are based on the supposition that the trouble lies in either a short or open circuit within the computer.
- If engine trouble occurs even though proper operating voltage is detected in the computer connector, then it can be assumed that the ECU is faulty and should be replaced.

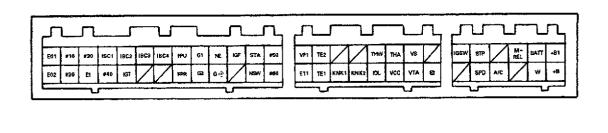
EFI SYSTEM CHECK PROCEDURE

EG27E~0

PREPARATION

- (a) Disconnect the connectors from the ECU.
- (b) Remove the locks as shown in the illustration so that the tester probe(s) can easily come in. NOTICE: Pay attention to sections "A" and "B" in the illustration which can be easily broken.
- (c) Reconnect the connectors to the ECU.
- (d) Using a voltmeter with high impedance (10 k Ω /V minimum), measure the voltage at each terminal of the wiring connectors.

HINT:

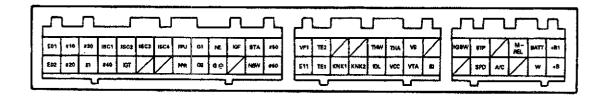

- Perform all voltage measurements with the connectors connected.
- Verify that the battery voltage is 11 V or more when the ignition switch is in "ON" position.

E627T-03.

Engine ECU Terminals

Symbol	Connection	Symbol	Connection	Symbol	Connection
E01	POWER GROUND	NE	DISTRIBUTOR	THA	INTAKE AIR TEMP. SENSOR
E02	POWER GROUND	G⊝	DISTRIBUTOR	vcc	VACUUM SENSOR THROTTLE POSITION SENSOR
#10	INJECTOR	IGF	IGNITER	vs	AIR FLOW METER
#20	INJECTOR		-	VTA	THROTTLE POSITION SENSOR
#30	INJECTOR	STA	STARTER RELAY		-
E1	ENGINE GROUND	NSW	IGNITION SWITCH	E2	SENSOR GROUND
ISC1	ISC VALVE	#50	INJECTOR	IGSW	IGNITION SWITCH
#40	INJECTOR	#60	INJECTOR		-
ISC2	ISC VALVE	VF1	CHECK CONNECTOR	STP	STOP LIGHT SWITCH
IGT	IGNITER	E11	SENSOR GROUND	SPD	SPEED SENSOR
ISC3	ISC VALVE	TE2	CHECK CONNECTOR		-
	-	TE1	CHECK CONNECTOR	A/C	A/C AMPLIFIER
ISC4	ISC VALVE		-	M-REL	EFI MAIN RELAY
	-	KNK1	No. 1 KNOCK SENSOR		-
FPU	VSV FOR FUEL PRESSURE CONTROL		-	BATT	BATTERY
FPR	FUEL PUMP RELAY	KNK2	No. 2 KNOCK SENSOR	w	WARNING LIGHT
G 1	DISTRIBUTOR	THW	WATER TEMP. SENSOR	+B1	EFI MAIN RELAY
G2	DISTRIBUTOR	IDL.	THROTTLE POSITION SENSOR	+B	EFI MAIN RELAY

ECU Terminais

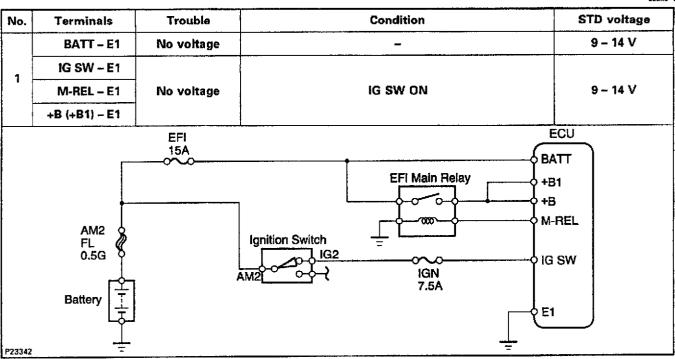


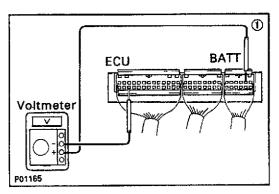
P01821

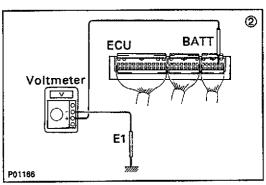
ECU Wiring Connectors Voltage

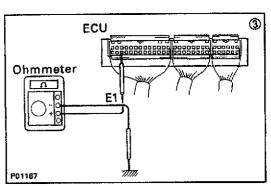
No.	Terminals		Condition	STD voltage (V)	See page
	BATT-E1		-		
Ì	IG SW - E1				EG-40
1	M-RL – E1	IG SW ON		9 – 14	
<u> </u>	+B +B1 E1				
	IDL – E2		Throttle valve open	9 – 14	
	VCC – E2		-	4.5 – 5.5	
2	VTA E2		Throttle valve fully closed (Throttle opener must be cancelled first)	0.3 - 0.8	EG-43
		IG SW ON	Throttle valve fully open	3.2 – 4.9	
	VCC - E2			4.5 - 5.5	
	VS – E2		Measuring plate fully closed	3.5 – 4.5	EG-45
3			Measuring plate fully open	0,2 - 0.5	
. 1		Idling		1.2 – 2.4	
		3,000 rpm		0.8 1.3	
4	#10 } - E01 #60	IG SW ON		9 – 14	EG-46
5	THA – E2	IG SW ON	Intake air temp. 20°C (68°F)	0.5 - 3.4	EG-47
6	THW - E2	IG SW ON	Engine coolant temp. 80°C (176°F)	0.2 – 1.0	EG-48
7	STA-E1	Cranking		6 or more	EG-49
8	IGT – E1	Idling		Pulse generation	EG-50
9	ISC1 } -E1 ISC4	IG SW ON		9 – 14	EG-51
10	W E1	No trouble (*C	CHECK" engine warning light off) and engine	9 – 14	EG-52

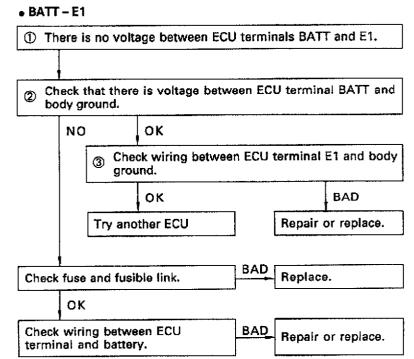
ECU Terminals

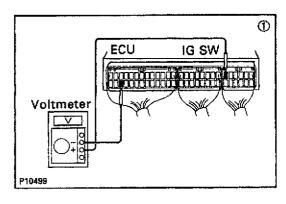


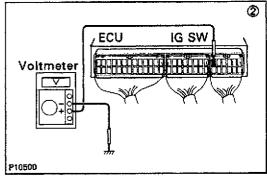

P01821

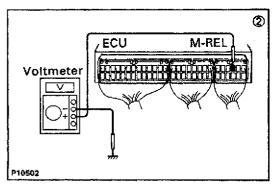

E¢

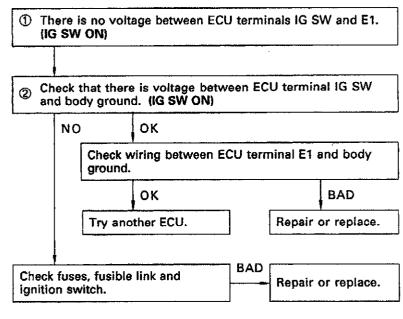

G

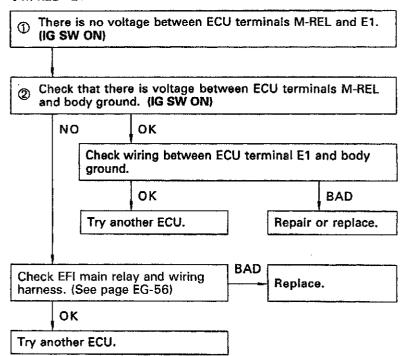

FORMS-O

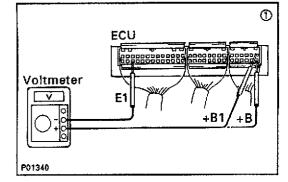


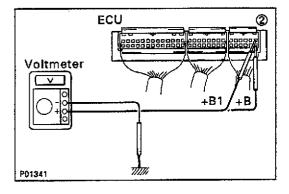


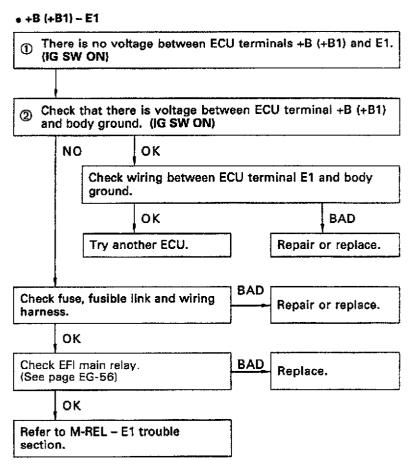




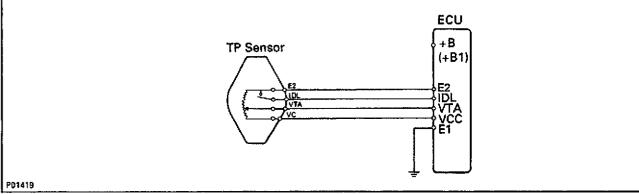


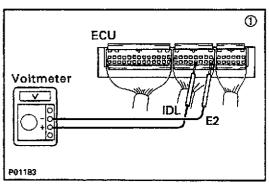


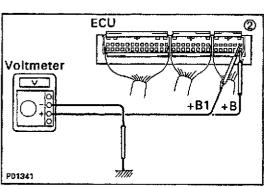

• IG SW -- E1

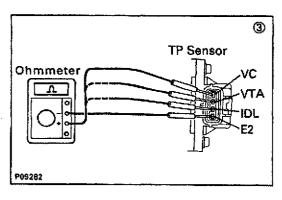


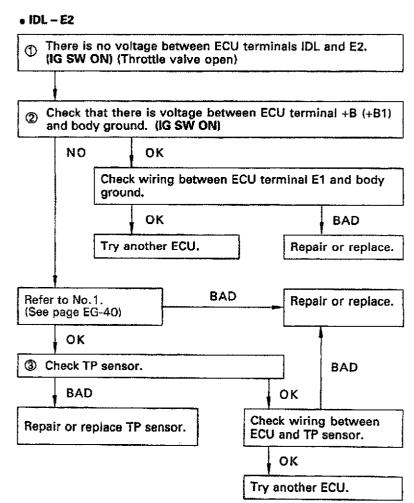
• M-REL - E1

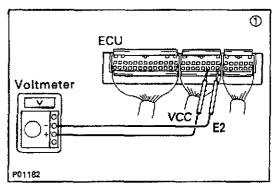


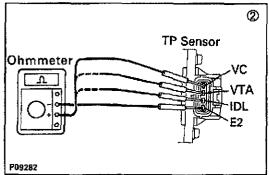


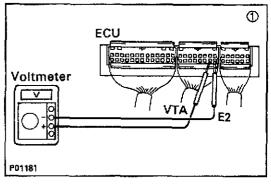


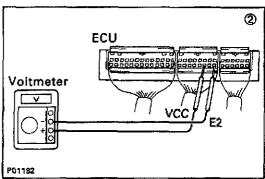

ΞG

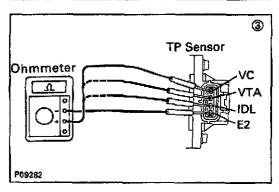

No.	Terminals	Trouble	Condition		STD voltage
	IDL – E2			Throttle valve open	9 – 14 V
2	VCC - E2	No voltage	IG SW ON	-	4.5 – 5.5 V
	VTA – E2			Throttle valve fully closed (Throttle opener must be cancelled first)	0.3 - 0.8 V
				Throttle valve fully open	3.2 – 4.9 V

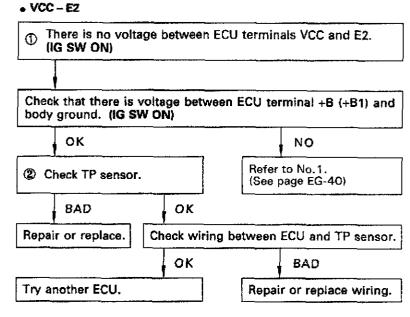


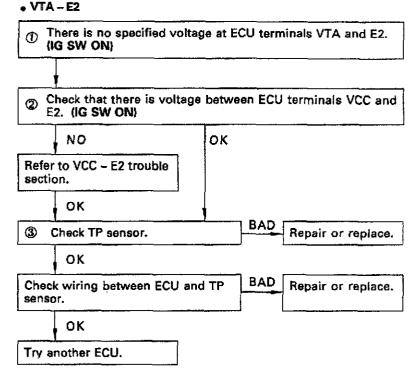


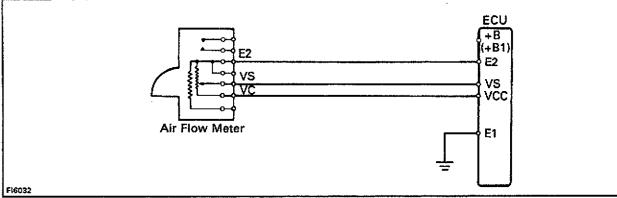


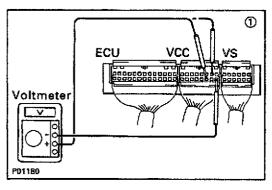


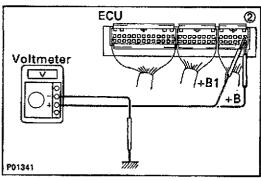


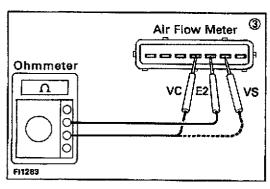


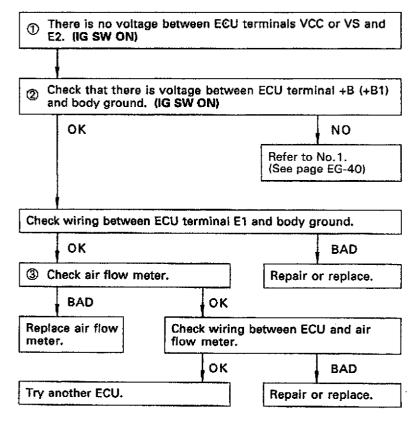


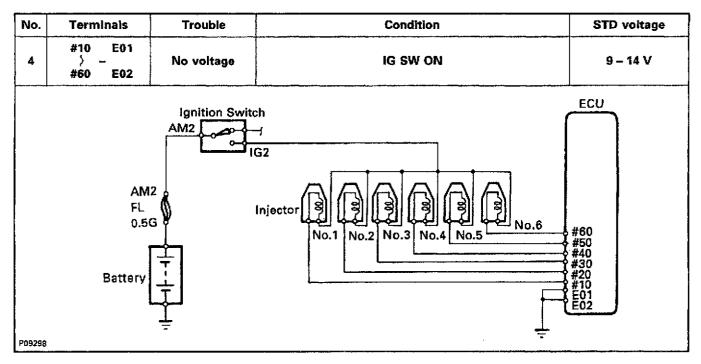


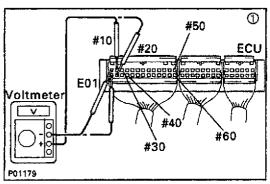


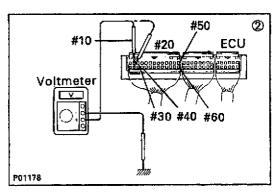


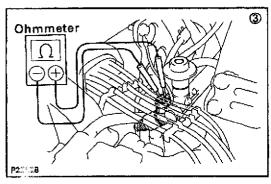


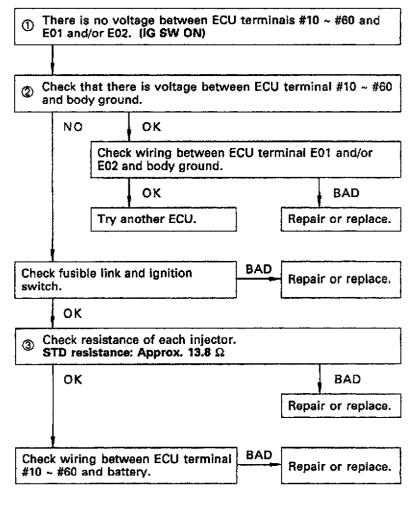

No.	Terminals	Trouble	Condition		STD voltage
	VCC – E2 -		-	4.5 – 5.5 V	
F	VS - E2	1	IG SW ON	Measuring plate fully closed	3.5 – 4.5 V
3	VS E2	No voltage		Measuring plate fully open	0.2 - 0.5 V
	VS – E2		Idling		1.2 – 2.4 V
	VS - E2		3,000 rpm		0.8 - 1.3 V

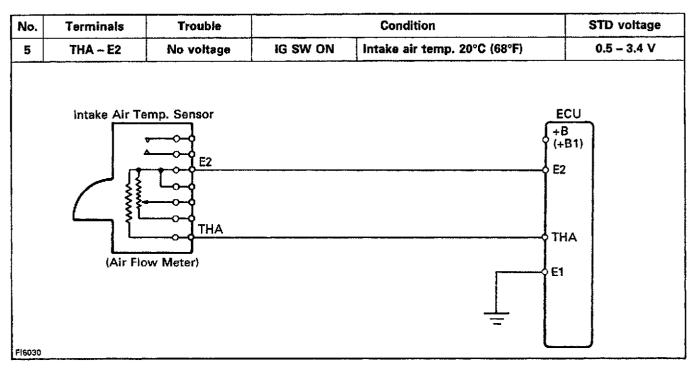


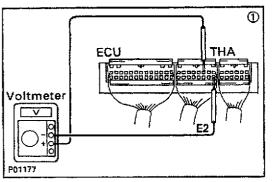


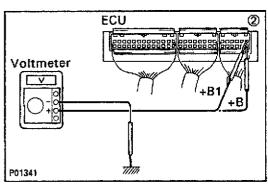


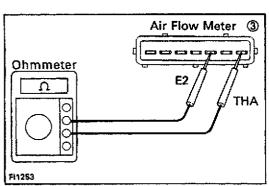


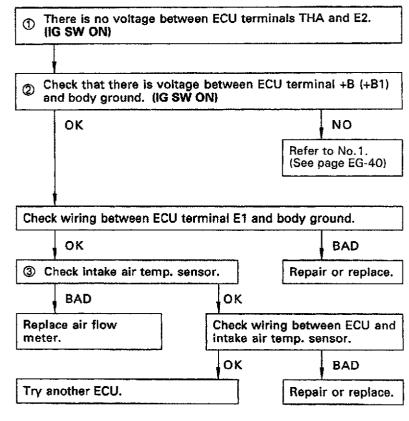


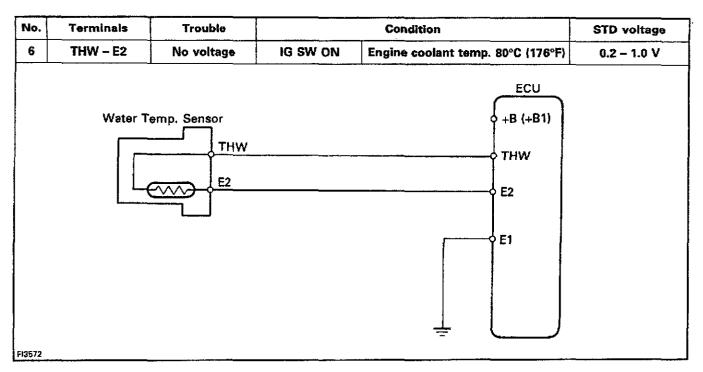


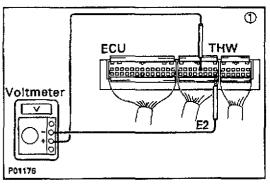


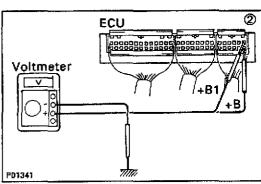


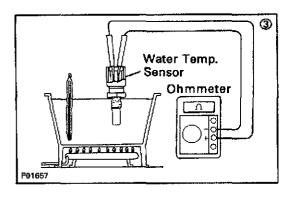


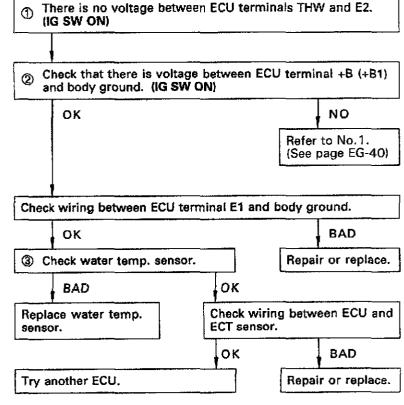


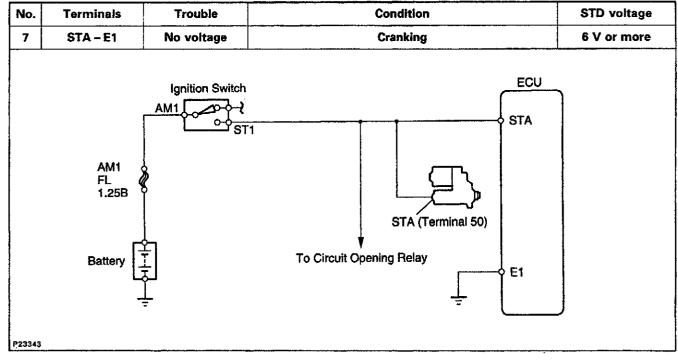


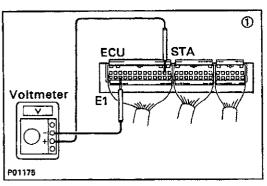


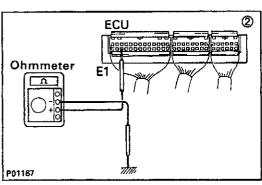


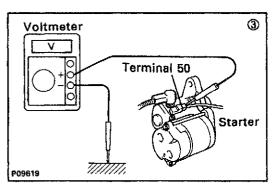


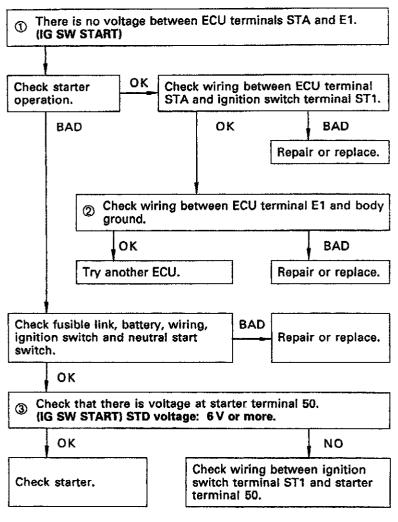


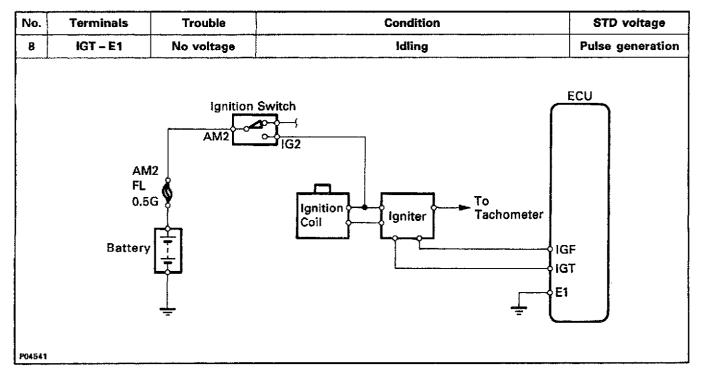


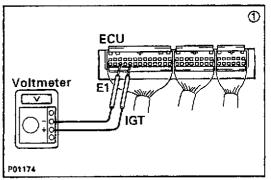


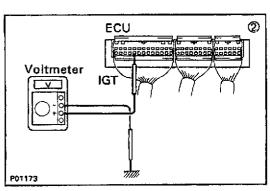


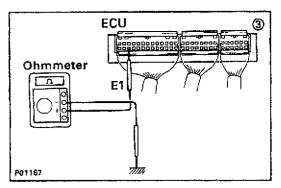


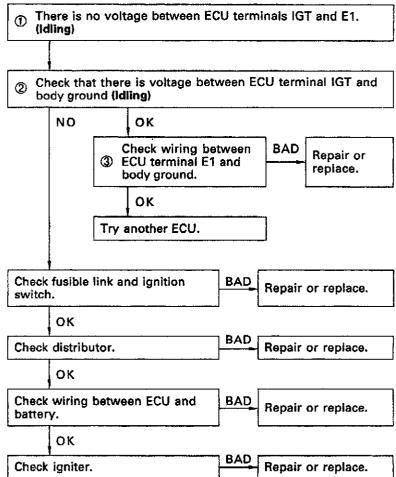


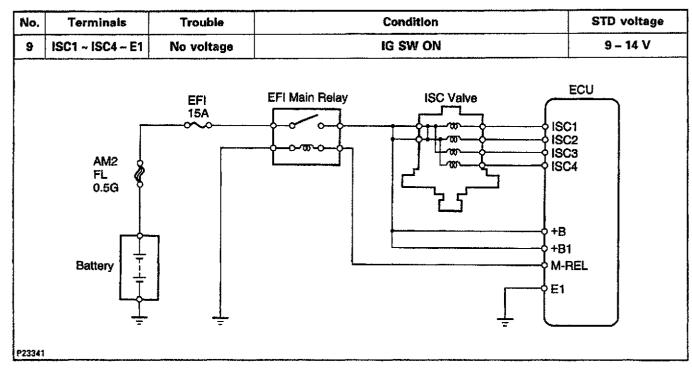


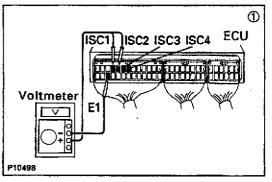


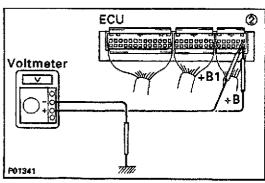


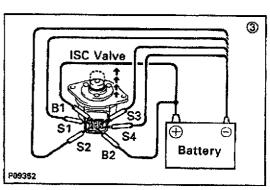


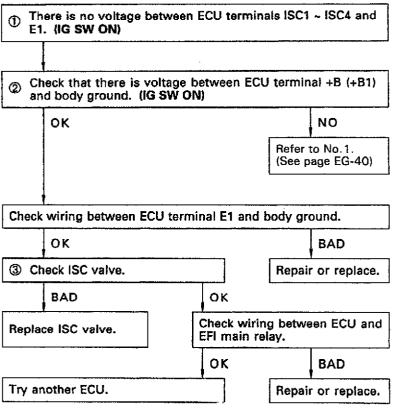


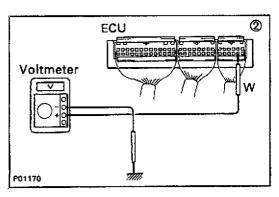


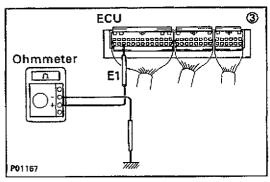


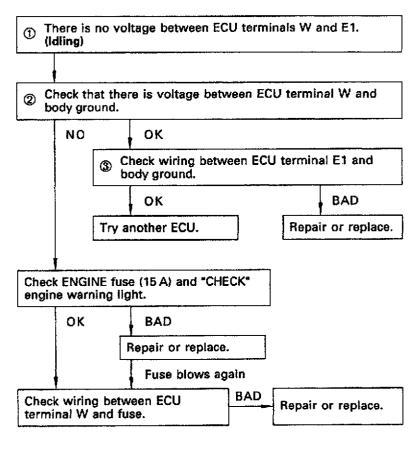


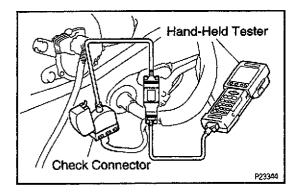



G







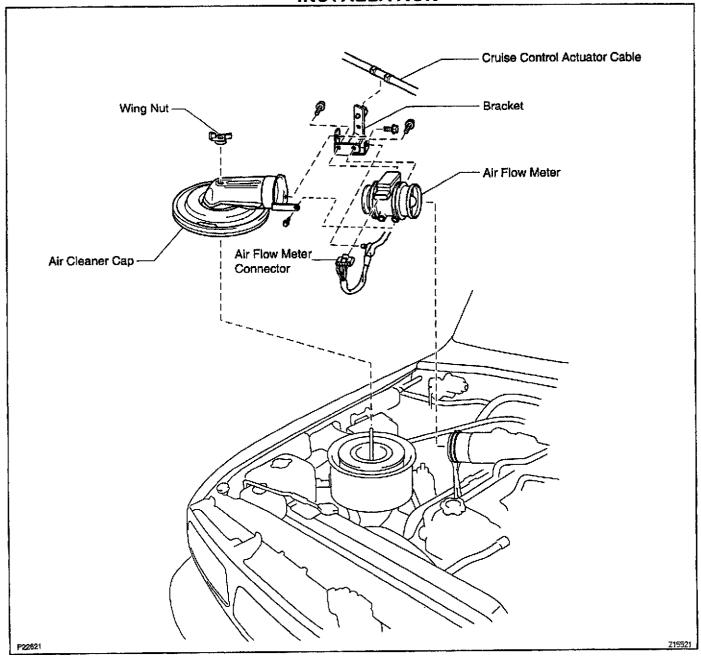


REFERENCE VALUE OF ENGINE ECU DATA

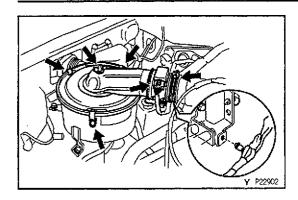
HINT: Engine ECU data can be monitored by hand—held tester.

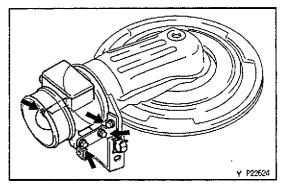
- 1. Hook up the hand—held tester to the check connector.
- 2. Monitor engine ECU data by following the prompts on the tester screen.

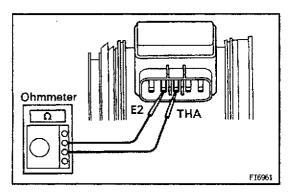
Please refer to the hand—held tester operator's manual for further details.



REFERENCE VALUE FOR ENGINE ECU DATA (Engine at normal operating temp.)


ltem	Inspection condition	Reference value
IN IFOTOD	Engine cold to hot	Gradually decreases
INJECTOR Engine idling at normal operating temp. *1 IGNITION Increase engine speed Engine idling at normal operating temp. *1 A/C switch ON A/T shifting in *D* position Ignition switch ON (Do not start engine.) ENGINE SPED RPM kept stable (Comparison with tachometer) Engine idling at normal operating temp. *1 Increase engine speed Engine idling at normal operating temp. *1 Increase engine speed COOLANT TEMP. Closed throttle position		Approx. 3 msecs
IGNITION	Increase engine speed	Gradually increases
	Engine idling at normal operating temp. *1	40 ±10 steps
IOO OTED	A/C switch ON	Step increases
ISC STEP	A/T shifting in "D" position	Step increases
	Ignition switch ON (Do not start engine.)	Approx. 125 steps
	RPM kept stable (Comparison with tachometer)	No great changes
AIDEL OW IO	Engine idling at normal operating temp. *1	Approx. 6 g/s
AIRFLUW 2	Increase engine speed	Gradually increases
AIDELOW 19	Engine idling at normal operating temp. *1	Approx. 1.2 - 2.4 V
AIRPLOW 3	Increase engine speed	Gradually increases
	Engine at normal operating temp.	75 - 95°C (167 - 203°F) *4
	Closed throttle position	Below 5°
THROTTLE	Wide open throttle	Above 70°
	From closed throttle position to wide open throttle	Gradually increases
VEHICLE SPD	During driving (Comparison with speedometer)	No large differences
TARGET A/F L *5	Engine idling at normal operating temperature	2.50 ± 1.25 V *6
A/F FB LEFT *5	RPM stable at 2,500 rpm with normal operating temp.	ON
STA SIGNAL	During cranking	ON
IDL SIGNAL	Closed throttle position	ON
A/C SIGNAL	A/C switch ON	ON
NSW SIGNAL	When shifting from "P" or "N" position into a position	CEAD
•7	other than "P" or "N".	GEAR
Ox L *5	RPM stable at 2,500 rpm	RICH LEAN is repeated.


- *1: All accessories and A/C are switch OFF.
- *2: Station wagon only.
- *3: Hardtop only.
- *4: If the engine coolant temperature sensor circuit is open or shorted, the engine ECU assumes an engine coolant temp. value of 80°C (176°F).
- *5: Europe only.
- *6: When feedback control is forbidden, 0 V is displayed.
- *7: A/T only.


AIR FLOW METER (Station Wagon) COMPONENTS FOR REMOVAL AND INSTALLATION

EGSVC_03

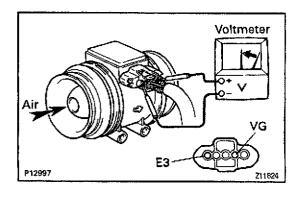
AIR FLOW METER REMOVAL

Installation is in the reverse order of removal.

- 1. REMOVE AIR CLEANER CAP AND AIR FLOW METER
- (a) Disconnect the air flow meter connector and wire clamp.
- (b) Disconnect the cruise control actuator cable.
- (c) Loosen the air cleaner hose clamp.
- (d) Disconnect the 3 clips, and remove the wing nut, air cleaner cap and air flow meter.
- 2. REMOVE AIR FLOW METER

Remove the 4 bolts, bracket and air flow meter.

Torque: 6.9 N·m (70 kgf·cm, 61 in.·lbf)



AIR FLOW METER INSPECTION

INSPECT AIR FLOW METER RESISTANCE
 Using an ohmmeter, measure the resistance between terminals THA and E2.

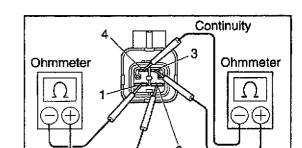
Between terminals	Resistance	Temperature
THA — E2	10 — 20 kΩ	-20°C (-4°F)
THA - E2	4 — 7 kΩ	0°C (32°F)
THA — E2	2 — 3 kΩ	20°C (68°F)
THA - E2	0.9 — 1.3 kΩ	40°C (104°F)
THA — E2	0.4 — 0.7 kΩ	60°C (140°F)
THA - E2	0.2 — 0.4 kΩ	80°C (176°F)

If the resistance is not as specified, replace the air flow meter.

2. INSPECT AIR FLOW METER OPERATION

- (a) Connect the air flow meter connector.
- (b) Using a voltmeter, connect the positive (+) tester probe to terminal VG, and negative (-) tester probe to terminal E3.
- (c) Blow air into the air flow meter, and check that the voltage fluctuates.

If operation is not as specified, replace the air flow meter.

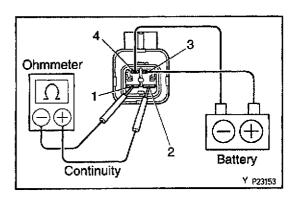

(d) Disconnect the air flow meter connector.

EFI MAIN RELAY (Hardtop) EFI MAIN RELAY INSPECTION

EG13W-0L

I. REMOVE EFI MAIN RELAY

LOCATION: In the engine compartment on the left side.



No Continuity

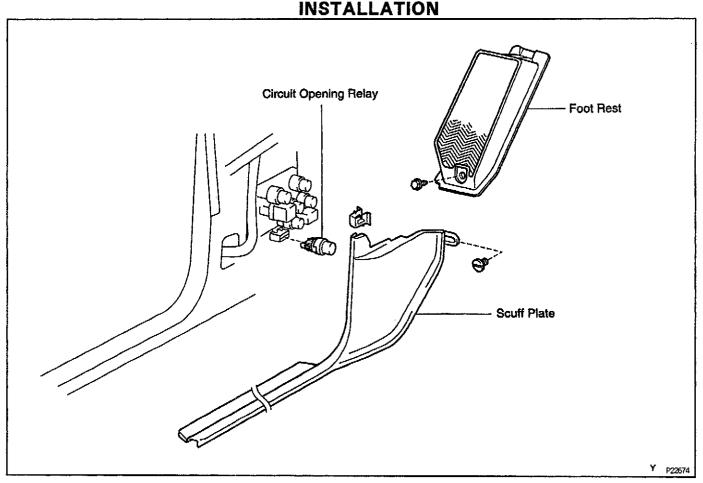
2. INSPECT EFI MAIN RELAY

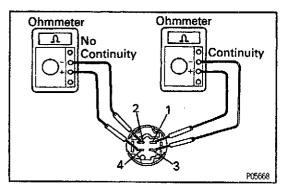
- A. Inspect relay continuity
- (a) Using an ohmmeter, check that there is continuity between terminals 3 and 4.
- (b) Check that there is no continuity between terminals 1 and 2.

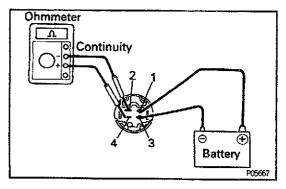
If continuity is not as specified, replace the relay.

Y P23152

B. Inspect relay operation

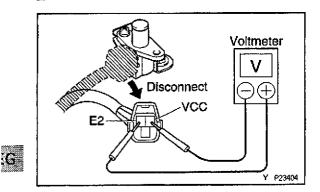

- (a) Apply battery voltage across terminals 3 and 4.
- (b) Using an ohmmeter, check that there is continuity between terminals 1 and 2.


 If operation is not as specified, replace the relay.
- 3. REINSTALL EFI MAIN RELAY



CIRCUIT OPENING RELAY (Station Wagon) COMPONENTS FOR REMOVAL AND

EG176--05


CIRCUIT OPENING RELAY INSPECTION

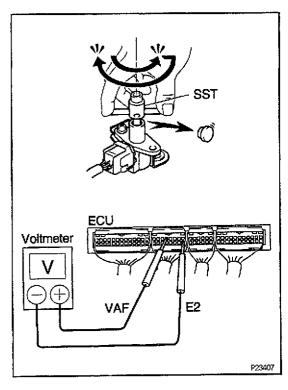
- 1. REMOVE CIRCUIT OPENING RELAY
- 2. INSPECT CIRCUIT OPENING RELAY
- A. Inspect relay continuity
- (a) Using an ohmmeter, check that there is continuity between terminals 1 and 3.
- (b) Check that there is no continuity between terminals 2 and 4.

If continuity is not as specified, replace the relay.

- B. Inspect relay operation
- (a) Apply battery voltage across terminals 1 and 3.
- (b) Using an ohmmeter, check that there is continuity between terminals 2 and 4.If operation is not as specified, replace the relay.
- 3. REINSTALL CIRCUIT OPENING RELAY

EG

VARIABLE RESISTOR (Station Wagon Except Europe) VARIABLE RESISTOR INSPECTION


508M6-C

- 1. INSPECT POWER SOURCE VOLTAGE OF VARIABLE RESISTOR
- (a) Disconnect the variable resistor connector.
- (b) Turn the ignition switch ON.
- (c) Using a voltmeter, measure the voltage between connector terminals VCC and E2 of the wiring harness side.

Voltage:

4.5 - 5.5 V

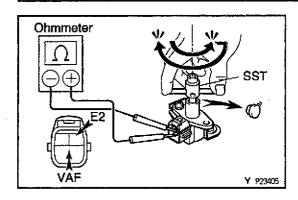
- (d) Turn the ignition switch to LOCK.
- (e) Reconnect the variable resistor connector.

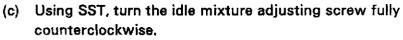
2. INSPECT POWER OUTPUT OF VARIABLE RESISTOR

- (a) Turn the ignition switch ON.
- (b) Connect a voltmeter to terminals VAF and E2 of the ECU, and measure the voltage while slowly turning the idle mixture adjusting screw first fully counter—clockwise, and then fully clockwise using SST. SST 09243-00020
- (c) Check that voltage changes smoothly from 0 V to approx. 5 V.

 HINT: There is no sudden jump up to 5 V or down to

HINT: There is no sudden jump up to 5 V or down to 0 V.

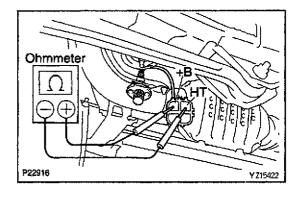


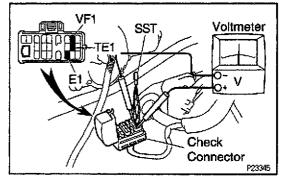

3. INSPECT RESISTANCE OF VARIABLE RESISTOR

- (a) Disconnect the variable resistor connector.
- (b) Using an ohmmeter, measure the resistance between terminals VCC and E2 of the variable resistor.

 Resistance:

4 - 6 kΩ





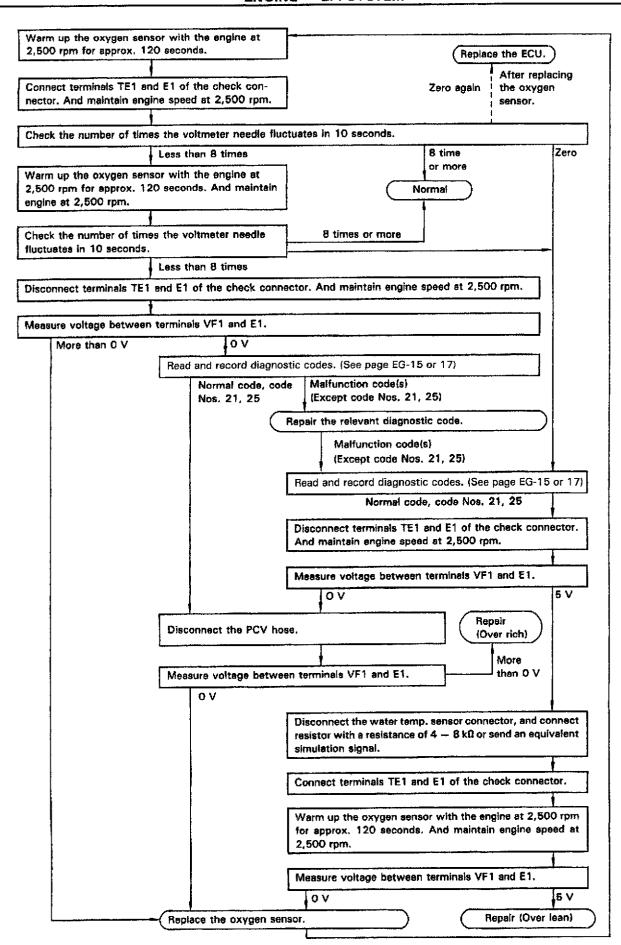
SST 09243-00020

- (d) Connect the ohmmeter to terminals VAF and E2 of the variable resistor, and turn the idle mixture adjusting screw fully clockwise and check that the resistance value changes from approx. 5 k Ω to 0 k Ω accordinglγ.
- (e) Reconnect the variable resistor connector.

OXYGEN SENSOR (Europe)

OXYGEN SENSOR INSPECTION 1. INSPECT HEATER RESISTANCE OF OXYGEN

- SENSOR
- (a) Disconnect the oxygen sensor connector.
- (b) Using an ohmmeter, measure the resistance between terminals +B and HT.


Resistance:

At 20°C (68°F): 11 - 16 Ω

If resistance is not as specified, replace the oxygen sensor.

- (c) Reconnect the oxygen sensor connector.
- **INSPECT FEEDBACK VOLTAGE**
- (a) Warm up the engine.
- (b) Connect the positive (+) probe of a voltmeter to terminal VF1 of the check connector, and negative (-) probe to terminal E1. Do the test on the next page. HINT: Use SST when connecting between terminals TE1 and E1 of the check connector. SST 09843-18020

SERVICE SPECIFICATIONS SERVICE DATA

EGOZA-0

EGOEE-10

Air flow meter	Resistance (THA - E2)	at -20°C (-4°F)	10 — 20 kΩ
(Station		at 0°C (32°F)	4 — 7 kΩ
Wagon)		at 20°C (68°F)	2 — 3 kΩ
		at 40°C (104°F)	0.9 — 1.3 kΩ
		at 60°C (140°F)	0.4 - 0.7 kΩ
		at 80°C (176°F)	0.2 - 0.4 kΩ
Oxygen sensor	Heater coil resistance	at 20°C (68°F)	11 - 16 Ω

TORQUE SPECIFICATIONS

Part tightened	N⋅m	kgf⋅cm	ft-lbf
Air flow meter x Bracket	6.9	70	61 in.·lbf
Air flow meter x Air cleaner cap	6.9	70	61 inlbf

COOLING SYSTEM

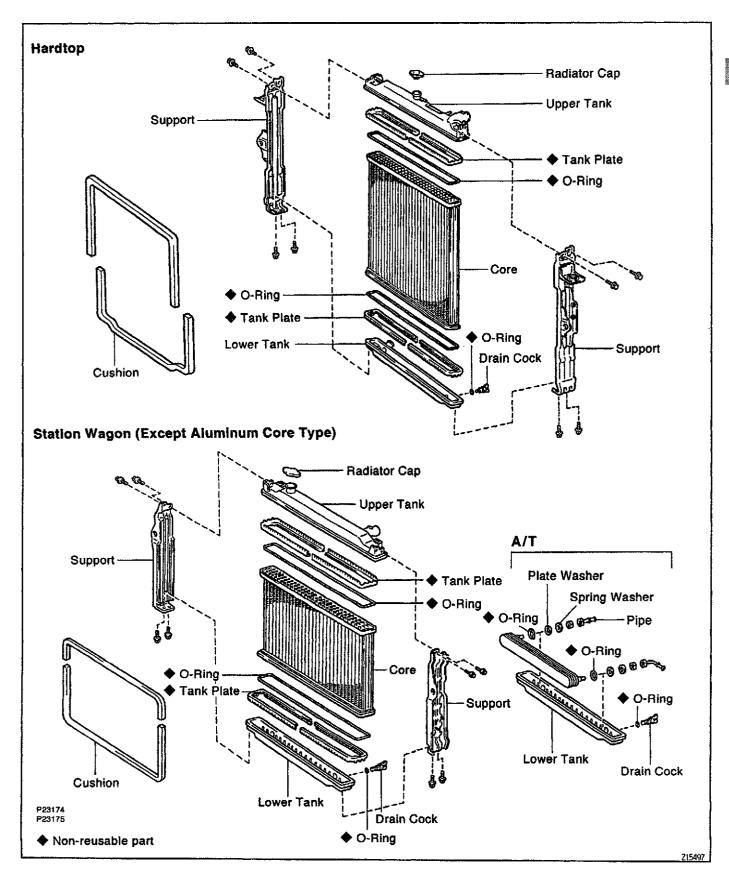
PREPARATION

SST (SPECIAL SERVICE TOOLS)

EG18K-09

	09230-00010	Radiator Service Tool Set	
000	09230-01010	Radiator Service Tool Set	
	(09231-00060)		
00			

COOLANT

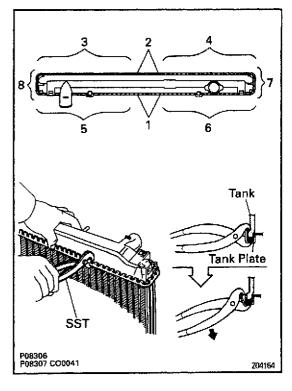

Hardtop:

Item	Capacity	Classification
Engine coolant		Ethylene – glycol base
w/ Heater	13.2 liters (14.0 US qts, 11.6 imp. qts)	
w/o Heater	12.2 liters (12.9 US qts, 10.7 imp. qts)	

Station Wagon:

Item	Capacity	Classification
Engine coolant		Ethylene-glycol base
Europe (M/T)		
w/ Heater	13.6 liters (14.4 US qts, 12.0 lmp. qts)	
w/o Heater	11.7 liters (12.4 US qts, 10.3 lmp. qts)	
Europe (A/T)		{
w/ Heater	13.4 liters (14.2 US qts, 11.8 imp. qts)	
w/o Heater	11.5 liters (12.2 US qts, 10.1 lmp. qts)	
Others (M/T)	•	
w/ Front and rear heaters	14.2 liters (15.0 US qts, 12.5 lmp. qts)	:
w/ Front heater	13.4 liters (14.2 US qts, 11.8 lmp. qts)	
w/o Heater	12.4 liters (13.1 US qts, 10.9 lmp. qts)	
Others (A/T)		
w/ Front and rear heaters	14.0 liters (14.8 US qts, 12.3 imp. qts)	
w/ Front heater	13.2 liters (14.0 US qts, 11.6 lmp. qts)	
w/o Heater	12.2 liters (12.9 US qts, 10.7 lmp. qts)	

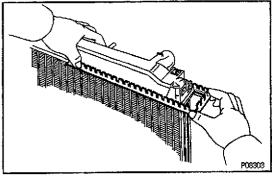
RADIATOR COMPONENTS FOR DISASSEMBLY AND ASSEMBLY

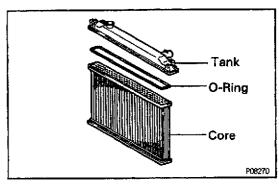


EG1.49-01

F99224

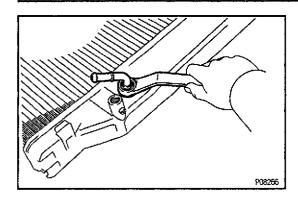
RADIATOR DISASSEMBLY


1. REMOVE SUPPORTS
Remove the 8 bolts and 2 supports.


2. REMOVE TANK PLATE

(a) Raise the claws of the tank plates with SST in the numerical order shown in the illustration. SST 09230-00010

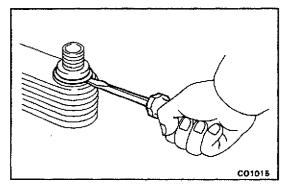
NOTICE: Be careful not to damage the core plate.


(b) Pull the tank plates outward.

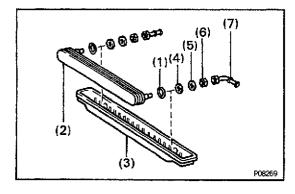
3. REMOVE TANK

- (a) Pull the tank upward.
- (b) Remove the O-ring.

G


4. A/T:

REMOVE OIL COOLER FROM LOWER TANK


(a) Remove the pipes.

HINT: Make a note of the direction the pipes face.

- (b) Remove the nuts, spring washers, plate washers and oil cooler.
- (c) Remove the O-ring from the oil cooler.

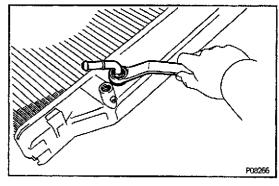
RADIATOR ASSEMBLY

G588--01

1. A/T:

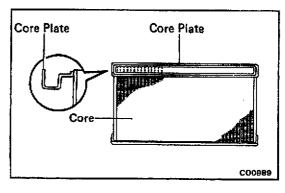
INSTALL OIL COOLER TO LOWER TANK

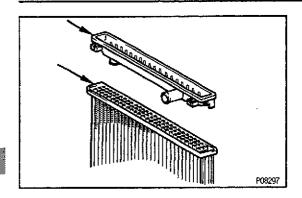
- (a) Clean the O-ring contact surface of the lower tank and oil cooler.
- (b) Install new O-rings (1) to the oil cooler (2).
- (c) Install the oil cooler (2) to the lower tank (3).
- (d) Install the plate washers (4), spring washers (5) and nuts (6). Torque the nuts.


Torque: 10 N·m (100 kgf-cm, 7 ft-lbf)

(e) Install the pipes (7).

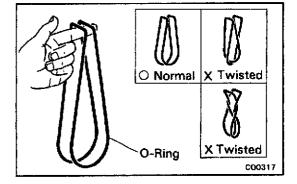
Torque: 15 N·m (150 kgf·cm, 11 ft·lbf)

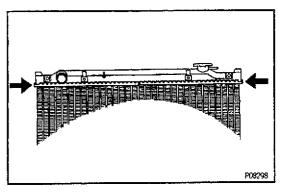

HINT: Face the pipes in the same direction as they


were before disassembly.

2. CHECK CORE PLATE FOR DAMAGE HINT:

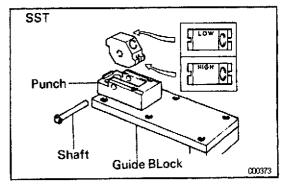
- If the sides of the core plate groove are deformed, reassembly of the tank will be impossible. Therefore, first correct any deformation with pliers.
- Water leakage will result if the bottom of the core plate groove is damaged or dented. Therefore, repair or replace if necessary.



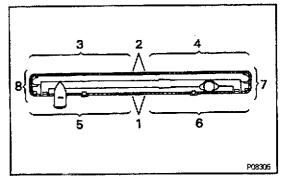

3. INSTALL TANK

Install a new O-ring and the tank. HINT:

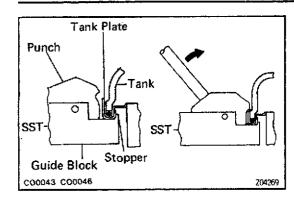
• Clean the tank and core plate.



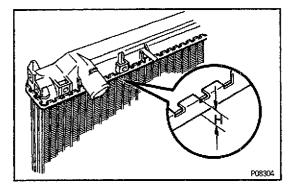
Take out any twists.


4. INSTALL TANK PLATE

Insert new tank plates from both ends in the direction of the arrows. Firmly set the tank plates in the core plate.

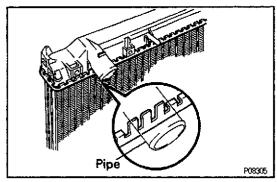


5. STAKE CLAWS OF TANK PLATES


(a) Set the punch of SST to "LOW". SST 09230-00010

(b) Stake the claws of the tank plates with SST in the numerical order shown in the illustration.

NOTICE: If the bottom of the core plate is staked with the SST on the guide block stopper, it may result in water leakage.



HINT:

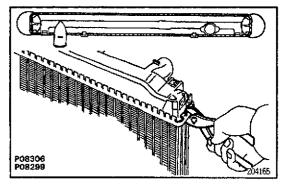
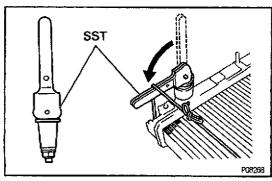

 Stake with just enough pressure to leave a mark on the claw. The staked plate height (H) should be as follows:

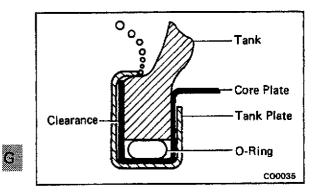
Plate height (H):


9.2 - 9.6 mm (0.362 - 0.378 in.)

• Do not stake the areas protruding around the pipes.

 The points shown in the illustration cannot be staked with the SST. Use pliers and be careful not to damage the core plates.

6. CHECK FOR WATER LEAKS


- (a) Tighten the drain plug.
- (b) Plug the inlet and outlet pipes of the radiator with SST.

SST 09230-00010, 09230-01010 (09231-00060)

(c) Using a radiator cap tester, apply pressure to the radiator.

Test pressure:

147 kPa (1.5 kgf/cm², 21 psi)

(d) Check for water leaks.

HINT: On radiators with resin tanks, there is a clearance between the core plate and tank plate where a minute amount of air will remain, giving the appearance of an air leak when the radiator is submerged in water. Therefore, before doing the water leak test, first swirl the radiator around in the water until all air bubbles disappear.

7. PAINT TANK PLATE

HINT: If the water leak test checks out okay, allow the radiator to dry completely and then paint the tank plate.

8. INSTALL SUPPORTS

Install the 2 supports with the 8 bolts.

Torque: 13 N·m (130 kgf·cm, 9 ft·lbf)

SERVICE SPECIFICATIONS SERVICE DATA

EG07L-17

г			0.0 0.0 (0.000 0.070 (-)
- 1	Radiator	Plate height	9.2 — 9.6 mm (0.362 — 0.378 in.)
- 1	Ugniaro	1 into upiāni	

TORQUE SPECIFICATIONS

EG07M-1

Part tightened	N∙m	kgf-cm	ft- bf
Radiator oil cooler x Radiator lower tank	10	100	7
Radiator oil cooler pipe	15	150	11
Radiator cupport y Radiator tank	13	130	9

LUBRICATION SYSTEM

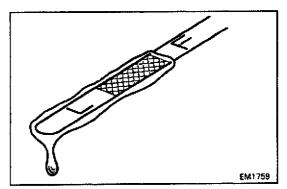
PREPARATION

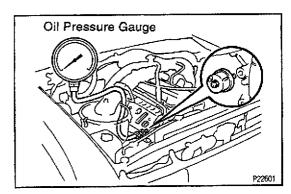
EQUIPMENT

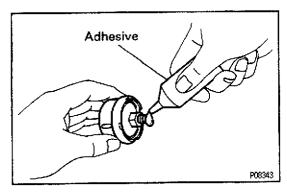
EG07# -- 0E

Oil pressure gauge		

LUBRICANT


Item	Capacity	Classification		
Engine oil		API grade SG, SH or ILSAC multigrade		
Dry fill	8.0 liters (8.5 US qts, 7.0 lmp. qts)	engine oil and recommended viscosity oil		
Drain and refill				
w/ Oil filter change	7.4 liters (7.8 US qts, 6.5 lmp. qts)			
w/o Oil filter change	6.9 liters (7.3 US qts, 6.1 lmp. qts)			


SSM (SPECIAL SERVICE MATERIALS)


G071 -- 09

08833-000	80 Adhesive 1344,	Oil pressure switch
	THREE BOND 1344,	
	LOCTITE 242 or equivalent	

G

OIL PRESSURE CHECK

CHECK ENGINE OIL QUALITY

Check the oil for deterioration, entry of water, discoloring or thinning.

If the quality is poor, replace the oil.

Oil grade:

API grade SG, SH or ILSAC multigrade engine oil. Recommended viscosity is as shown in the illustration.

CHECK ENGINE OIL LEVEL 2.

> The oil level should be between the "L" and "F" marks on the dipstick.

If low, check for leakage and add oil up to "F" mark.

- REMOVE OIL PRESSURE SWITCH, AND INSTALL **OIL PRESSURE GAUGE**
- 4. WARM UP ENGINE

Allow the engine to warm up to normal operating temperature.

CHECK OIL PRESSURE 5.

Oil pressure:

At idle

29 kPa (0.3 kgf/cm², 4.3 psi) or more

At 3,000 rpm

 $245 - 490 \text{ kPa} (2.5 - 5.0 \text{ kgf/cm}^2, 36 - 71 \text{ psi})$

- 6. REMOVE OIL PRESSURE GAUGE AND REINSTALL OIL PRESSURE SWITCH
- (a) Remove the oil pressure gauge.
- (b) Apply adhesive to two or three threads of the oil pressure switch.

Adhesive:

Part No. 08833-00080, THREE BOND 1344, **LOCTITE 242 or equivalent**

- (c) Reinstall the oil pressure switch.
- START ENGINE AND CHECK FOR LEAKS 7.

(2.0 kW Type)

PREPARATION

SST (SPECIAL SERVICE TOOLS)

\$T008-0L

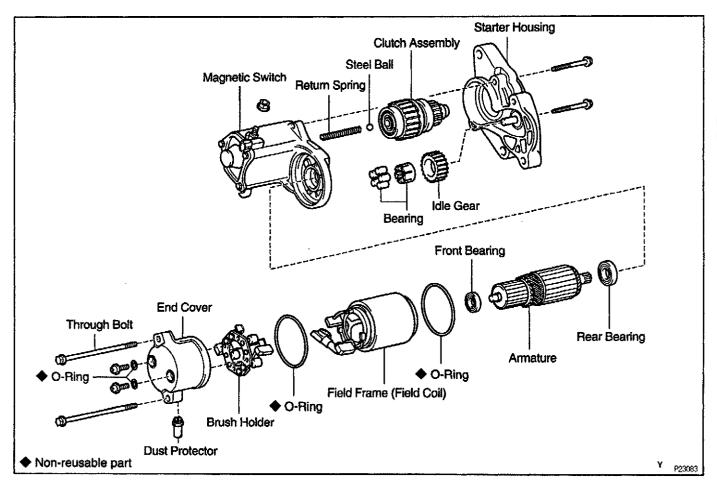
09286-46011		Injection Pump Spline Shaft Puller	Armature bearing	
	09820-00030	Alternator Rear Bearing Replacer	Armature rear bearing	

RECOMMENDED TOOLS

#T00T~00

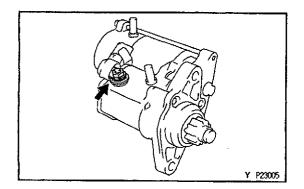
09082-00050 TOYOTA Electrical Tester Set.

EQUIPMENT


8T02D-0A

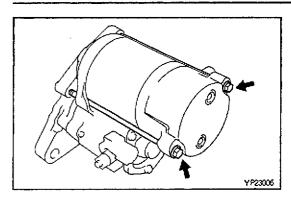
Commutator
Steel ball
Brush spring
Commutator
Commutator
Commutator, Brush

ST

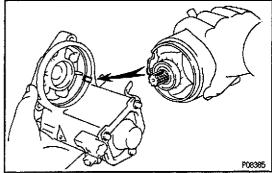

STARTER COMPONENTS FOR DISASSEMBLY AND ASSEMBLY

STARTER DISASSEMBLY

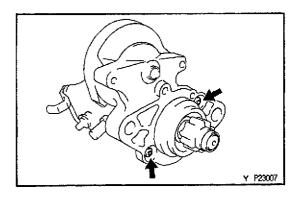
\$109W~03


Assembly is in the reverse order of disassembly.
ASSEMBLY HINT: Use high—temperature grease to lubricate the bearings, gears, return spring and steel ball when assembling the starter.

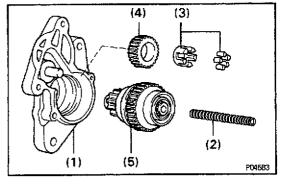
I. REMOVE FIELD FRAME AND ARMATURE


(a) Remove the nut, and disconnect the lead wire from the magnetic switch terminal.

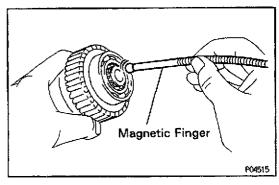
Torque: 5.4 N·m (55 kgf·cm, 48 in.·lbf)



- (b) Remove the 2 through bolts. Torque: 9.3 N·m (95 kgf·cm, 82 in.-lbf)
- (c) Pull out the field frame with the armature from the magnetic switch assembly.
- (d) Remove the O-ring. ASSEMBLY HINT: Use a new O-ring.

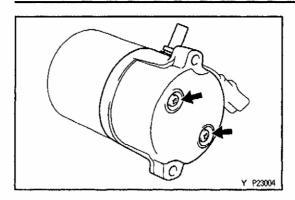


ASSEMBLY HINT: Align the protrusion of the field frame with cutout of the magnetic switch.



2. REMOVE STARTER HOUSING, CLUTCH **ASSEMBLY AND GEAR**

(a) Remove the 2 screws. Torque: 9..3 N·m (95 kgf·cm, 82 in.·lbf)

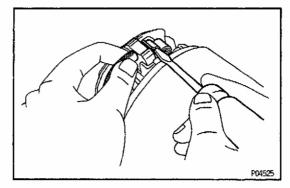


- Remove these parts from the magnetic switch assemblv:
 - (1) Starter housing
 - (2) Return spring
 - (3) Bearing
 - (4) Idler gear
 - (5) Starter clutch assembly

REMOVE STEEL BALL

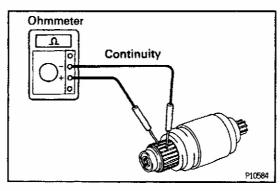
Using a magnetic finger, remove the steel ball from the clutch shaft hole.

4. REMOVE BRUSH HOLDER


(a) Remove the 2 screws, 2 O-rings and end cover from the field frame.

Torque: 3.8 N·m (40 kgf·cm, 35 in.-lbf)

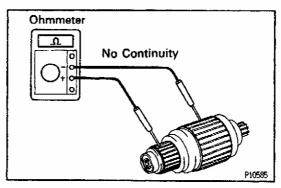
ASSEMBLY HINT: Use new O-rings.


(b) Remove the O-ring from the field frame.

ASSEMBLY HINT: Use a new O-ring.

(c) Using a screwdriver, hold the spring back and disconnect the brush from the brush holder. Disconnect the four brushes and remove the brush holder.

5. REMOVE ARMATURE FROM FIELD FRAME



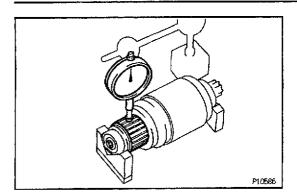
STARTER INSPECTION AND REPAIR Armature Coil

INSPECT COMMUTATOR FOR OPEN CIRCUIT
 Using an ohmmeter, check that there is continuity between the segments of the commutator.

 If there is no continuity between any segment, replace

If there is no continuity between any segment, replace the armature.

2. INSPECT COMMUTATOR FOR GROUND

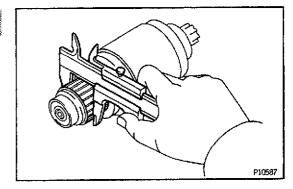

Using an ohmmeter, check that there is no continuity between the commutator and armature coil core. If there is continuity, replace the armature.

Commutator

1. INSPECT COMMUTATOR FOR DIRTY AND BURNT SURFACES

If the surface is dirty or burnt, correct it with sandpaper (No. 400) or on a lathe.

ST


2. INSPECT COMMUTATOR CIRCLE RUNOUT

- (a) Place the commutator on V-blocks.
- (b) Using a dial gauge, measure the circle runout.

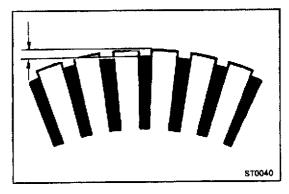
 Maximum circle runout:

0.05 mm (0.0020 in.)

If the circle runout is greater than maximum, correct it on a lathe.

3. INSPECT COMMUTATOR DIAMETER

Using a vernier caliper, measure the commutator diameter.


Standard diameter:

35 mm (1.38 in.)

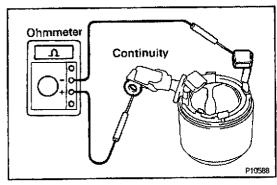
Minimum diameter:

34 mm (1,34 in.)

If the diameter is less than minimum, replace the armature.

4. INSPECT UNDERCUT DEPTH

Check that the undercut depth is clean and free of foreign materials. Smooth out the edge.

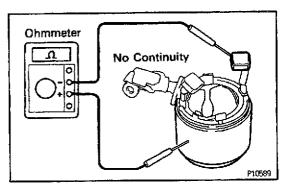

Standard undercut depth:

0.7 mm (0.028 in.)

Minimum undercut depth:

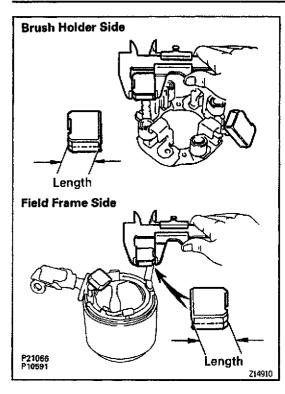
0.2 mm (0.008 in.)

If the undercut depth is less than minimum, correct it with a hacksaw blade.



Field Frame (Field Coil)

1. INSPECT FIELD COIL FOR OPEN CIRCUIT


Using an ohmmeter, check that there is continuity between the lead wire and field coil brush lead.

If there is no continuity, replace the field frame.

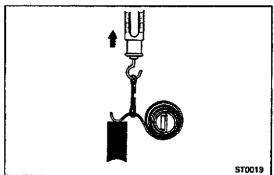
2. INSPECT FIELD COIL FOR GROUND

Using an ohmmeter, check that there is no continuity between the field coil end and field frame. If there is continuity, repair or replace the field frame.

Brushes

INSPECT BRUSH LENGTH

Using a vernier caliper, measure the brush length. Standard length:

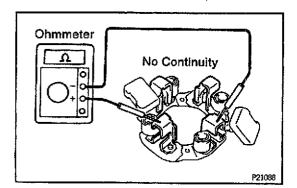

15.0 mm (0.591 in.)

Minimum length:

9.0 mm (0.354 in.)

If the length is less than minimum, replace the brush holder and field frame.

Brush Springs


INSPECT BRUSH SPRING LOAD

Take the pull scale reading the instant the brush spring separates from the brush.

Spring installed load:

12.7 - 24.5 N (1.30 - 2.50 kgf, 2.7 - 5.3 lbf)

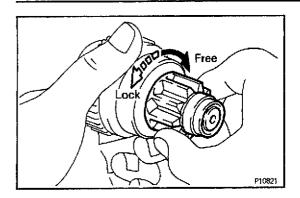
If the installed load is not within specification, replace the brush springs.

Brush Holder

INSPECT BRUSH HOLDER INSULATION

Using an ohmmeter, check that there is no continuity between the positive (+) and negative (-) brush holders.

If there is continuity, repair or replace the brush holder.

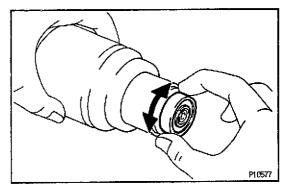

Clutch and Gears

INSPECT GEAR TEETH

Check the gear teeth on the pinion gear, idle gear and clutch assembly for wear or damage.

If damaged, replace the gear or clutch assembly.

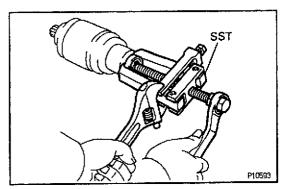
If damaged, also check the drive plate ring gear for wear or damage.



2. INSPECT CLUTCH PINION GEAR

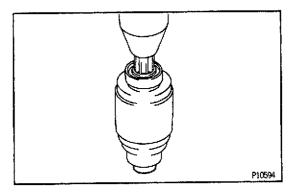
Hold the starter clutch and rotate the pinion gear clockwise, and check that it turns freely. Try to rotate the pinion gear counterclockwise and check that it locks.

If necessary, replace the clutch assembly.

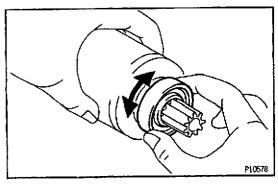


Bearings

1. INSPECT FRONT BEARING

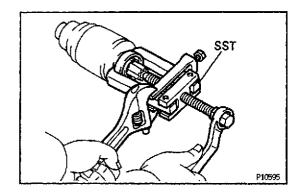

Turn each bearing by hand while applying inward force.

If resistance is felt or the bearing sticks, replace the bearing.

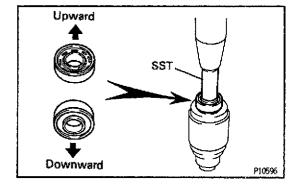


2. IF NECESSARY, REPLACE FRONT BEARING

(a) Using SST, remove the bearing. SST 09286-46011


(b) Using a press, press in a new front bearing.

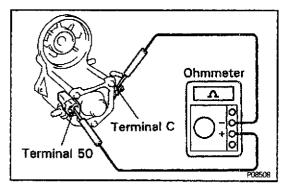
3. INSPECT REAR BEARING


Turn each bearing by hand while applying inward force.

If resistance is felt or the bearing sticks, replace the bearing.

4. IF NECESSARY, REPLACE REAR BEARING

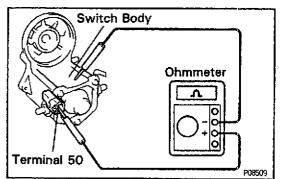
(a) Using SST, remove the bearing. SST 09286-46011

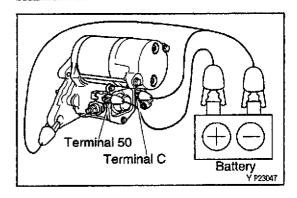


(b) Using a press, press in a new rear bearing.

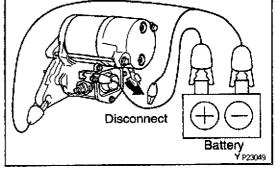
NOTICE: Be careful of the bearing installation direction.

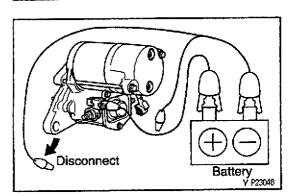
SST 09820-00030

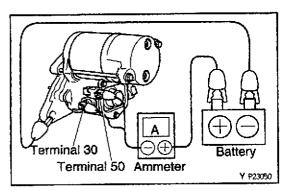



Magnetic Switch

PERFORM PULL—IN COIL OPEN CIRCUIT TEST
 Using an ohmmeter, check that there is continuity between terminals 50 and C.


 If there is no continuity, replace the magnetic switch.




2. PERFORM HOLD—IN COIL OPEN CIRCUIT TEST Using an ohmmeter, check that there is continuity between terminal 50 and the switch body.
If there is no continuity, replace the magnetic switch. Ж

Disconnect

STARTER PERFORMANCE TEST

NOTICE: These tests must be performed within 3 to 5 seconds to avoid burning out the coil.

- PERFORM PULL-IN TEST
- (a) Disconnect the field coil lead wire from terminal C.
- (b) Connect the battery to the magnetic switch as shown. Check that the clutch pinion gear moves outward. If the clutch pinion gear does not move, replace the magnetic switch assembly.

2. PERFORM HOLD—IN TEST

With battery connected as above with the clutch pinion gear out, disconnect the negative (-) lead from terminal C. Check that the pinion gear remains out. If the clutch pinion gear returns inward, replace the magnetic switch assembly.

INSPECT CLUTCH PINION GEAR RETURN

Disconnect the negative (-) lead from the switch body.

Check that the clutch pinion gear returns inward. If the clutch pinion gear does not return, replace the magnetic switch assembly.

PERFORM NO-LOAD PERFORMANCE TEST

- (a) Connect the battery and ammeter to the starter as shown.
- (b) Check that the starter rotates smoothly and steadily with the pinion gear moving out. Check that the ammeter shows the specified current. Specified current:

At 11,5V: 100 A or less

SERVICE SPECIFICATIONS SERVICE DATA

\$1015-0V

Starter	Rated voltage and output power		12 V 2.0 kW
	No-load characteristics	Current	100 A or less at 11.5 V
		rpm	2,500 rpm or more
	Brush length	STD	15.0 mm (0.591 in.)
	1	Limit	9.0 mm (0.354 in.)
	Spring installed load		12.7 - 24.5 N (1.30 - 2.50 kgf, 2.7 - 5.3 lbf)
	Commutator		
	Diameter	STD	35.0 mm (1.38 in.)
		Limit	34.0 mm (1.34 in.)
	Undercut depth	STD	0.7 mm (0.024 in.)
		Limit	0.2 mm (0.008 in.)
	Circle runout	Limit	0.05 mm (0.0020 in.)

TORQUE SPECIFICATIONS

T016~-01

Part tightened	N⋅m	kgf-cm	ft-ibf
End cover x Field frame	3.8	40	35 in.∙lbf
Starter housing x Magnetic switch	9.3	95	82 inlbf
Field frame x Armature assembly	9.3	95	82 in. lbf
Lead wire x Terminal C of starter	5.4	55	48 inlbf

(55 A Type)

PREPARATION

SST (SPECIAL SERVICE TOOLS)

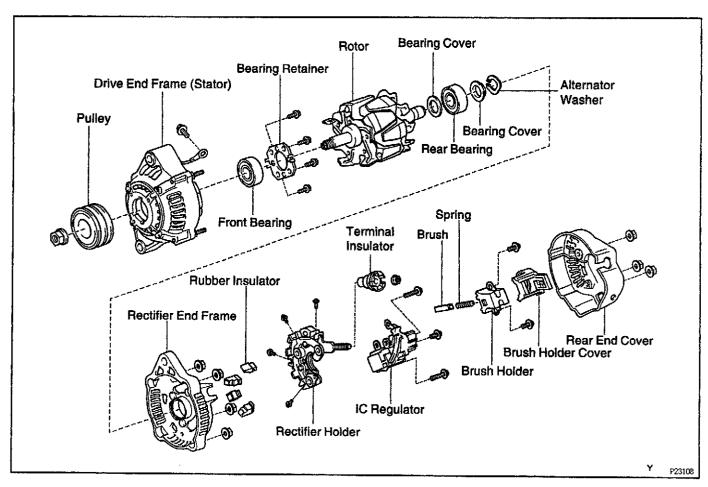
CHOOR-O

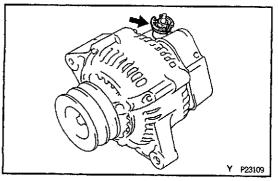
(Shanamanan)	09285-76010	Injection Pump Camshaft Bearing Cone Replacer	Rotor rear bearing cover
	09286-46011	Injection Pump Spline Shaft Puller	Rectifier and frame
	09820-00021	Alternator Rear Bearing Puller	
	09820-00030	Alternator Rear Bearing Replacer	
	09820-63010	Alternator Pulley Set Nut Wrench Set	
Occasiones b	09950-60010	Replacer Set	Rotor front bearing
9	(09951-00260)	Replacer 26	
9	(09951 - 00500)	Replacer 50	
	(09952-06010)	Adapter	

RECOMMENDED TOOLS

CHIDOSI -- OL

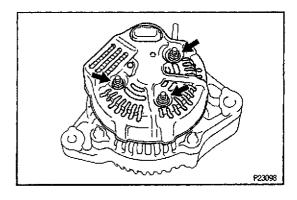
09082-00050	TOYOTA Electrical Tester Set.	
09905-00013	Snap Ring Pliers .	Generator washer

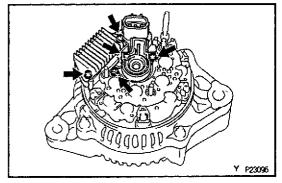

EQUIPMENT


CHOO		_	Q	M
	_			

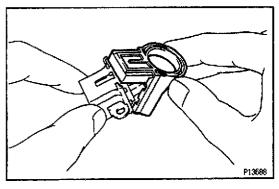
Ammeter(A)	
Torque wrench	
Vernier calipers	 Rotor (Slip ring), Brush

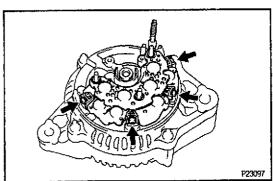
ALTERNATOR COMPONENTS FOR DISASSEMBLY AND ASSEMBLY



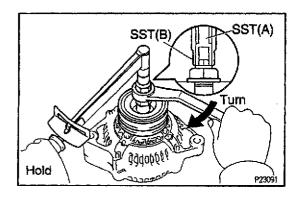

ALTERNATOR DISASSEMBLY

CHOA3-0


- I. REMOVE REAR END COVER
- (a) Remove the nut and terminal insulator.

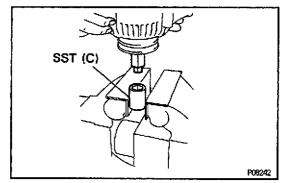

(b) Remove the 3 nuts and rear end cover.


- 2. REMOVE BRUSH HOLDER AND IC REGULATOR
- (a) Remove the 5 screws, brush holder and IC regulator.

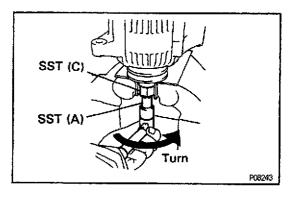

(b) Remove the brush holder cover from the brush holder.

- 3. REMOVE RECTIFIER HOLDER
- (a) Remove the 4 screws and rectifier holder.

(b) Remove the 4 rubber insulators.

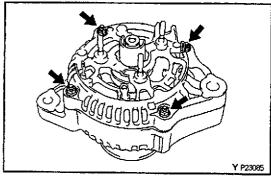


4. REMOVE PULLEY

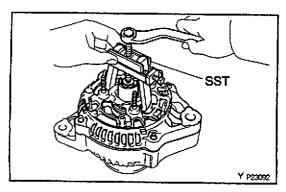

(a) Hold SST (A) with a torque wrench, and tighten SST
 (B) clockwise to the specified torque.
 SST 09820-63010

Torque: 39 N·m (400 kgf·cm, 29 ft·lbf)

(b) Check that SST (A) is secured to the rotor shaft.

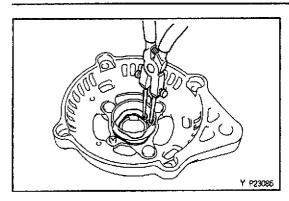

- (c) Mount SST (C) in a vise.
- (d) Install the generator to SST (C).

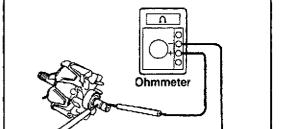
(e) To loosen the pulley nut, turn SST (A) in the direction shown in the illustration.


NOTICE: To prevent damage to the rotor shaft, do not loosen the pulley nut more than one—half of a turn.

- (f) Remove the generator from SST (C).
- (g) Turn SST (B) and remove SST (A and B).
- (h) Remove the pulley nut and pulley.

5. REMOVE RECTIFIER END FRAME


(a) Remove the 4 nuts.


(b) Using SST, remove the rectifier end frame. SST 09286-46011

CH

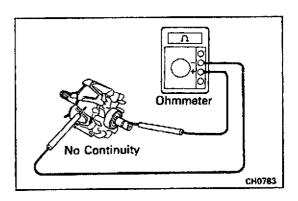
Ж

- (c) Using snap ring pliers, remove the alternator washer from the rectifier end frame.
- 6. REMOVE ROTOR FROM DRIVE END FRAME

CH0784

Continuity

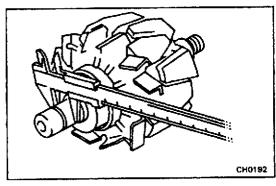
GENERATOR INSPECTION AND REPAIR Rotor


1. INSPECT ROTOR FOR OPEN CIRCUIT

Using an ohmmeter, check that there is continuity between the slip rings.

Standard resistance (Cold):

 $2.8 - 3.0 \Omega$


If there is no continuity, replace the rotor.

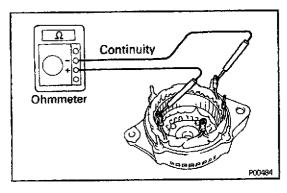
2. INSPECT ROTOR FOR GROUND

Using an ohmmeter, check that there is no continuity between the slip ring and rotor.

If there is continuity, replace the rotor.

3. INSPECT SLIP RINGS

- (a) Check that the slip rings are not rough or scored. If rough or scored, replace the rotor.
- (b) Using a vernier caliper, measure the slip ring diameter.

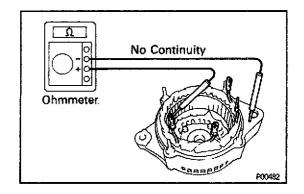

 Standard diameter:

14.2 - 14.4 mm (0.559 - 0.567 ln.)

Minimum diameter:

12.8 mm (0.504 in.)

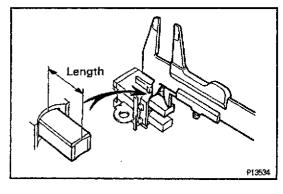
If the diameter is less than minimum, replace the rotor.



Stator (Drive End Frame)

1. INSPECT STATOR FOR OPEN CIRCUIT

Using an ohmmeter, check that there is continuity between the coil leads.


If there is no continuity, replace the drive end frame assembly.

2. INSPECT STATOR FOR GROUND

Using an ohmmeter, check that there is no continuity between the coil lead and drive end frame.

If there is continuity, replace the drive end frame assembly.

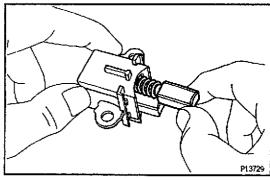
Brushes

1. INSPECT EXPOSED BRUSH LENGTH

Using vernier calipers, measure the exposed brush length.

Standard exposed length:

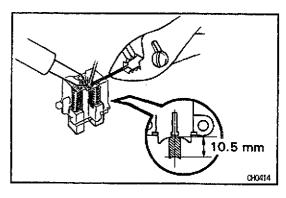
10.5 mm (0.413 in.)


Minimum exposed length:


1.5 mm (0.059 ln.)

If the exposed length is less than minimum, replace the brushes.

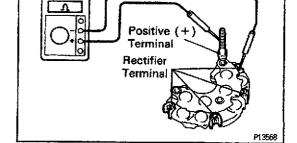
- (a) Unsolder and remove the brush and spring.
- (b) Run the wire of a new brush through the spring and the hole in the brush holder, and insert the spring and brush into the brush holder.



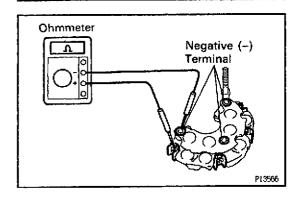
Exposed length:

10.5 mm (0.413 in.)

- (d) Check that the brush moves smoothly in the brush holder.
- (e) Cut off the excess wire,
- (f) Apply insulation paint to the soldered area.

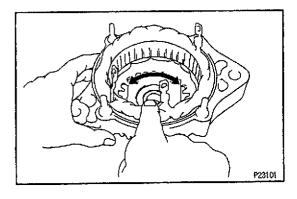

Rectifiers (Rectifier Holder)

1. INSPECT POSITIVE RECTIFIER


- (a) Using an ohmmeter, connect one tester probe to the positive (+) terminal and the other to each rectifier terminal.
- (b) Reverse the polarity of the tester probes and repeat step (a).

C+

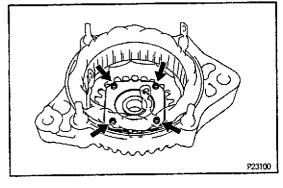
Ohmmeter

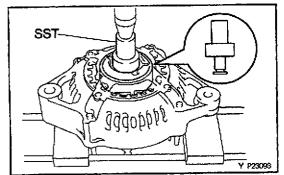

(c) Check that one shows continuity and the other shows no continuity.

If continuity is not as specified, replace the rectifier holder.

2. INSPECT NEGATIVE RECTIFIER

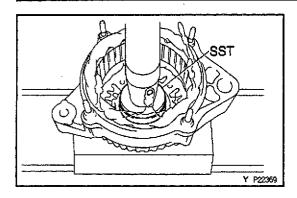
- (a) Using an ohmmeter, connect one tester probe to each negative (—) terminal and the other to each rectifier terminal.
- (b) Reverse the polarity of the tester probes and repeat step (a).
- (c) Check that one shows continuity and the other shows no continuity.


If continuity is not as specified, replace the rectifier holder.

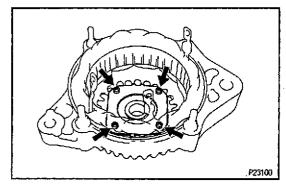

Bearings

1. INSPECT FRONT BEARING

Check that the bearing is not rough or worn.

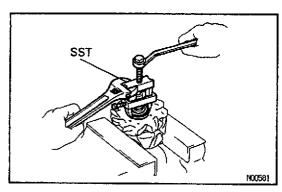


- 2. IF NECESSARY, REPLACE FRONT BEARING
- (a) Remove the 4 screws and bearing retainer.



(b) Using SST and a press, press out the bearing. SST 09950-60010 (09951-00260, 09952-06010)

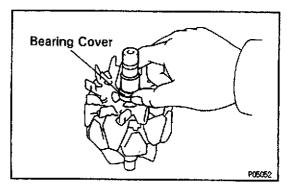
(c) Using SST and a press, press in a new bearing. SST 09950-60010 (09951-00500)



(d) Install the bearing retainer with the 4 screws. Torque: 2.6 N·m (27 kgf-cm, 23 in.·lbf)

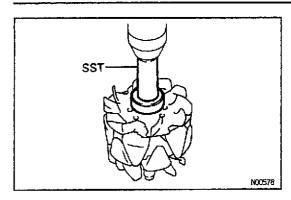
3. INSPECT REAR BEARING

Check that the bearing is not rough or worn.

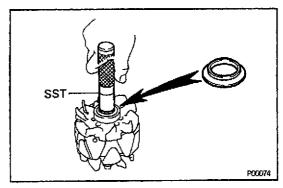

4. IF NECESSARY, REPLACE REAR BEARING

(a) Using SST, remove the bearing cover (outside) and bearing.

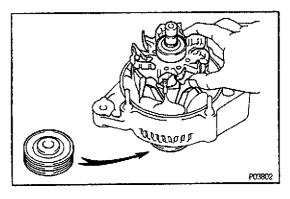
SST 09820-00021


NOTICE: Be careful not to damage the fan.

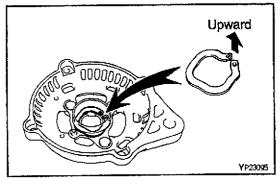
(b) Remove the bearing cover (inside).



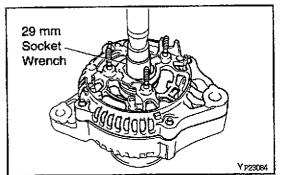
(c) Place the bearing cover (inside) on the rotor.


CF

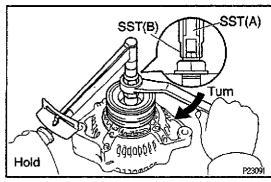
(d) Using SST and a press, press in a new bearing. SST 09820-00030

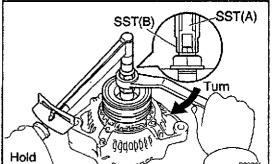

(e) Using SST, push in the bearing cover (outside). SST 09285-76010

GENERATOR ASSEMBLY


CHOAB-C

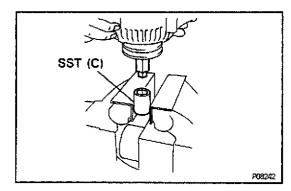
- 1. PLACE RECTIFIER END FRAME ON PULLEY
- 2. INSTALL ROTOR TO DRIVE END FRAME


- 3. INSTALL RECTIFIER END FRAME
- (a) Install the generator washer to the rectifier end frame.


NOTICE: Be careful of the generator washer installation direction.

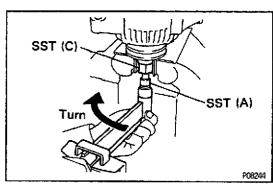
- (b) Using a 29 mm socket wrench and press, slowly press in the rectifier end frame.
- (c) Install the 4 nuts.

 Torque: 4.5 N·m (46 kgf·cm, 40 in.·lbf)



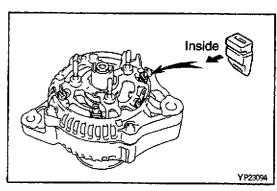
INSTALL PULLEY

- (a) Install the pulley to the rotor shaft by tightening the pulley nut by hand.
- (b) Hold SST (A) with a torque wrench, and tighten SST (B) clockwise to the specified torque. SST 09820-63010

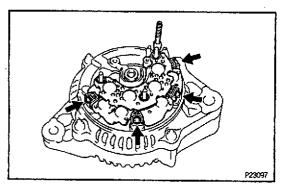

Torque: 39 N·m (400 kgf·cm, 29 ft·lbf)

(c) Check that SST (A) is secured to the pulley shaft.

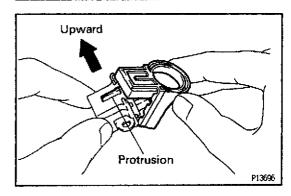
(d) Mount SST (C) in a vise.


(e) Install the generator to SST (C).

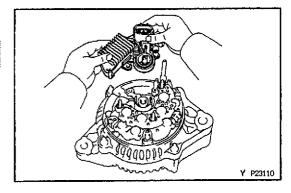
To torque the pulley nut turn SST (A) in the direction shown in the illustration.


Torque: 110 N·m (1,125 kgf·cm, 81 ft·lbf)

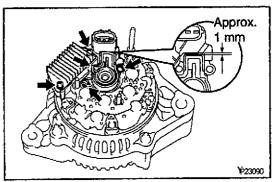
- (g) Remove the generator from SST (C).
- (h) Turn SST (B), and remove SST (A and B).


INSTALL RECTIFIER HOLDER 5.

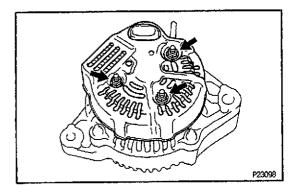
Install the 4 rubber insulators on the lead wires. NOTICE: Be careful of the rubber insulators installation direction.

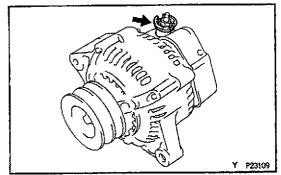

(b) Install the rectifier holder with the 4 screws. Torque: 2.9 N·m (30 kgf·cm, 26 in.-!bf)

Н

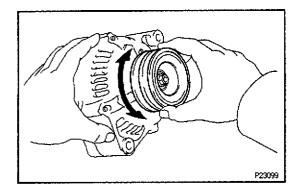


- 6. INSTALL IC REGULATOR AND BRUSH HOLDER
- (a) Install the brush holder cover to the brush holder.


 NOTICE: Be careful of the holder installation direction.


(b) Place the IC regulator together with the brush holder horizontally on the rectifier end frame.

- (c) Install the 5 screws until there is a clearance of approx. 1 mm (0.04 in.) between the brush holder and IC regulator.
- (d) Fit the brush holder cover.



- 7. INSTALL REAR END COVER
- (a) Install the end cover together with the rectifier plate.
 Hand tighten the bolt first for positioning the plate.
 Tighten the 3 nuts and retighten the bolt.
 Torque: 4.4 N·m (45 kgf-cm, 39 in.·lbf)

(b) Install the terminal insulator with the nut.

Torque: 4.1 N·m (42 kgf·cm, 36 in.·lbf)

8. CHECK THAT ROTOR ROTATES SMOOTHLY

SERVICE SPECIFICATIONS SERVICE DATA

CH018-0V

Alternator	Rated output		12 V 55 A	
	Rotor coil resistance		2.8 - 3.0 Ω	
	Slip ring diameter	STD	14.2 mm - 14.4 mm (0.559 - 0.567 in.)	
		Minimum	12.8 mm (0.504 in.)	
	Brush exposed length	STD	10.5 mm (0.413 in.)	
		Minimum	1.5 mm (0.059 in.)	
Alternator	Regulating voltage	at 25 °C (77°F)	14.0 — 15.0 V	
regulator		at 115°C (239°F)	13.5 14.3 V	

TORQUE SPECIFICATIONS

A9—КСОН

Part tightened	N∙m	kgf⋅cm	ft·lbf
Bearing retainer x Drive end frame	2.6	27	23 in.·lbf
Rectifier end frame x Drive end frame	4.5	46	40 in.·lbf
Alternator pulley x Rotor	110	1,125	81
Rectifier x Rectifier holder	2.9	30	26 in.·lbf
Reer end cover x Rectifier holder	4.4	45	39 in.·lbf
Rectifier plate x Rectifier holder	3.8	39	34 in.·lbf
Terminal insulator x Rectifier holder	4.1	42	36 in.·lbf

CF